tutorialv3

Alan Gauld

12 April 2010

tutorialv3

Table of Contents

LearniNgtO PrOGraM . . . oottt e et e e e e e e e e e e e e e e 1
LearniNgtO PrOGraM . . .ottt ettt et e e e e e e e e e e 4
What do | nead to e a prOgramImEr 2 . . o oot 7
What IS PrOgraMIMING? . . oottt e et e e e e e e e e e e e e 9
Learning o PrOgramo e 16
Sl SBUENCES . . . oottt ettt e e e e e e 17
37 = 24
MOME SEOUBNCES . . . o ot ot ettt ettt e e e e e e e e e e e e e e e e e e 52
LoopINGthe 00D 57
A LIteBit Of Syl . ..o 64
UL e e 70
CoNItioNAS e 79
Functionsand MOGUIES oo e e e e e e 88
FleHaNINGo 102
TaXtHaNAING . . . oo e 118
Error Handling oo 126
N IS 0B0ES . .« o v v ettt ettt e e e e e e e 133
REgUIEN EXPIESSIONS . . oottt et e e e e e 139
CLa83ES .ottt 147
EVENt DIVEN PrOgraITIS . . o .ttt et ettt e e e e e e e e e e e e e e e e 170
Introduction to GUI Programimingottt e e e et e e e e e e e 175
RECUISION 191
Introduction to Functional Programmingot 195
A GBI UL . . . oottt e e e e 204
PYNON N PIaCtioeo 220

.. 221

Apr 12, 2010

Learning to program 12/04/2010

contents L earning to Program
I ntroduction
by Alan Gauld
Concepts .
Introduction - What, Why, Who etc.
What do | need?
What is Some Background

Programming'? The reason | created this tutorial originally is that two friends wanted to learn

how to program and asked for my help. | was amazed to discover that while there

Getting Started were many programming web sites and tutorials on the web there was virtually
nothing that taught programming to complete beginners. So | wrote one. That
situation has changed and there are now many sites for beginners and | provide

The Basics links to some of them at the bottom of this page. However my approach is still

unique and as such may appeal to some |learners more than the other sites, so here
Simple Sequences It Stays.

The Raw Materials Theideaof learning to programis still, | believe, a good one for most computer
users, even if they do not ever write any significant programs themselves.

More Sequences Understanding how programmers think can help make applications more |ogical
and user friendly. Also many applications allow customisation by writing little

Loops programs known as macros. And of course there is the web with the opportunity

_ to publish your own web site and sooner or later you will want to add some

Addalittlestyle gynamic features to your web pages, and that means programming. Finally the

Internet and the Web encourage a general interest in computers and that interest

Talking to the user 4 rally leads to a desire to "take control”, which means learning to program!

Branching Why me? Well | am a professional programmer who came to programming from
an electronic engineering background. | have used (and continue to use) several

Modules & 5 . . .

FuNnctions computer languages and don't have any personal interest in promoting any
particular tool or language.

Handling Files .

0 What will | cover
Handling Text

Asmuch as | can. | will cover the basic theory of computer programming - what
Error Handling it is, some of its history and the basic techniques needed to solve problems. | will

not be teaching esoteric techniques or the details of any particular programming

language, in fact I'll be using severa different languages, since | bdieveits

important to realize that different languages do different things well. That said,
Advanced Topics the mgority of the course will be in the language called Python.

What'sinaname? \Who should read it?

Regular _ Put another way: what do | expect the reader to know already?
Expressions
| expect the reader of this tutorial to be an experienced user of a computer
Object Oriented system, probably running Windows, MacOS or Linux athough others should be
Programming able to copetoo. | aso expect them to understand some very basic mathematical
concepts such as how to cal cul ate areas of simple shapes, geometric coordinates,

D:\DOC\HomePage\l 2p\index.htm Page 1

Learning to program 12/04/2010

Event Driven sets, and basic algebra. These are all important in todays programming

Programming environments, and many programming concepts are based on these ideas.
However the depth of knowledge needed is very low and if you do find the math

GUI Programming getting too hard, you can usually just skip over afew paragraphs, try the code as
it is and hopefully the penny will drop even if the math still confuses you.

Recursion
- or doing it to One thing you should know is how to run commands from your operating
yourself system's command prompt. In Windows this is variously known as a DOS box,

_ the MSDOS Window or MS-DOS Prompt, or occasionally, nowadays, the CMD
Functional Box. Basicaly it's a black window with awhite text prompt that usually says
Programming C: \ W NDOWS> and you can start it by going to the St ar t - >Run dialog and
A Case Study typing CMD into the entry box and hitting OK. If you use Linux then you should

know all about terminal windows and on MacOS you can run the

Terminal program under Mac OS X (which is found in the

Applications->Uilities folder). Therearelots of powerful shortcuts that
Applications can save you typing timeif you care to read the help files for your Operating

System prompt. | won't cover those here. One tutorial for Windows users can be
Python in Practice found here. And abasic Unix shell primer can be found here.

Working with | will not be covering issues like how to create or copy text files, how to install

Databases software, or the organization of files on a computer storage system. Frankly if
you need to know those things you probably are not at the stage of being ready to

Using the Operatingprogram, regardless of your desire to do so. Find atutorial for your computer

System first, then when you're confident with the above concepts revisit this site.
Remember that Windows and MacOS both have comprehensive help systems
Inter-process built in. Linux has a huge amount of tutorial material on the web, Google is your

communications friend...

Network Why Python?
programming

N _ Python happens to be a nice language to learn. Its syntax is simple and it has
Writing web clients spme very powerful features built into the language. It supports lots of
programming styles from the very simple through to state of the art Object
Oriented and Functional techniques. It runs on lots of platforms - Unix/Linux,
MS Windows, Macintosh etc. It also has a very friendly and helpful user
community. All of these are important features for a beginner's language.

Writing Web
Applications

Paralldl processing

Python however is not just a beginner's language. As your experience grows you
can keep on using Python either as an end in itself or as arapid prototyping
language. There are a few things that Python is not well suited to, but these are

Appendices comparatively few and far between.

References, Books

. | will aso use VBScript and JavaScript as aternatives. The reason for thisisto
and Projects

show that the same basic techniques apply regardless of the language details.

Once you can program in one language you can easily pick up anew onein afew

days. Why those languages? Well, for a start they have very different stylesto

Download the Python so form a useful contrast, and more prosaically if we accept that most

~ Web surfers who are also beginners are using PCs with Microsoft Windows
installed, there is a programming environment built in to the operating system
called Windows Scripting Host which has support for VB Script and JScript

Orin ZIP format. (whichis Microsoft's variant of JavaScript). In addition, anyone using Microsoft's

web browser can also use these languages within their browser and, in fact,

wholething in TG
format

D:\DOC\HomePage\l 2p\index.htm Page 2

Learning to program

12/04/2010

Or in PDF format. JavaScript should work in almost any browser on any Operating System. Initially
well only look at how to run VBScript and JavaScript inside a browser, but | will
Send Feedback peintroducing WSH in some of the later topics as an optional extra

Other resources

There are other Web sites trying to do this in other languages (and in the time
since | originally created this site afew other Python sites have appeared). There
are also lots of tutorials for those who already know how to program but want to
learn a new language. This section contains links to some of those that | think are
interesting!

The official Python language web site with online documentation, latest
downl oads etc.

The official Perl web site- Perl is anatural competitor to Python in
capability but is, | think, harder to learn.

JavaScript. is the source for information about JavaScript.

If you don't much like my style aweb sitewith similar amsisthe How to
think like a Computer Scientist produced by Jeff Elkner who uses Python
in his high School classes. It seems alittle bit |ess comprehensive than
mine, but maybe I'm just biased :-)

Finally, if you are an adventurous sort with a good math background you
might try the How to Design Programs web sitewhich is also available as
a paper book. It teaches a dialect of the Lisp programming language
called Scheme. It is very effective at introducing a methodical approach to
building programs.

Sincel first wrote this tutor a whole bunch of non programmer's tutorials
have appeared and they are listed on the Python web site, so you can take
your pick. Most of them focus on just getting you programming in Python
so they don't explain so much of thejargon as | do, nor do they explain
the Computer Science theory like Jeff does. Y ou can find the page here.

Next Contents

If you have any ideas on how to improve this tutorial
pleasefed freeto email me

¥

D:\DOC\HomePage\l 2p\index.htm Page 3

Learning to program 12/04/2010

L earning to Program

by Alan Gauld

Introduction - What, Why, Who etc.

Some Background

Thereason | created this tutorial originally is that two friends wanted to learn how to program and
asked for my help. | was amazed to discover that while there were many programming web sites and
tutorials on the web there was virtually nothing that taught programming to complete beginners. So |
wrote one. That situation has changed and there are now many sites for beginners and | provide links
to some of them at the bottom of this page. However my approach is still unique and as such may
appeal to some learners more than the other sites, so hereit stays.

Theidea of learning to programis still, | believe, a good one for most computer users, even if they do
not ever write any significant programs themsel ves. Understanding how programmers think can help
make applications more logical and user friendly. Also many applications allow customisation by
writing little programs known as macros. And of course there is the web with the opportunity to
publish your own web site and sooner or later you will want to add some dynamic features to your
web pages, and that means programming. Finally the Internet and the Web encourage a genera
interest in computers and that interest naturally leads to a desire to "take control”, which means
learning to program!

Why me? Wdll | am a professional programmer who came to programming from an electronic
engineering background. | have used (and continue to use) several computer languages and don't
have any personal interest in promoting any particular tool or language.

What will | cover

Asmuch as | can. | will cover the basic theory of computer programming - what it is, some of its
history and the basi ¢ techniques needed to solve problems. | will not be teaching esoteric techniques
or the details of any particular programming language, in fact I'll be using several different languages,
since | believeitsimportant to realize that different languages do different things well. That said, the
majority of the course will be in the language called Python.

Who should read it?
Put another way: what do | expect the reader to know already?

| expect the reader of this tutorial to be an experienced user of a computer system, probably running
Windows, MacOS or Linux although others should be able to cope too. | also expect themto
understand some very basic mathematical concepts such as how to cal culate areas of simple shapes,
geometric coordinates, sets, and basic algebra. These are all important in todays programming
environments, and many programming concepts are based on these ideas. However the depth of
knowledge needed is very low and if you do find the math getting too hard, you can usually just skip
over afew paragraphs, try the code as it is and hopefully the penny will drop even if the math still
confuses youl.

D:\DOC\HomePage\l 2p\tutintro.htm Pege 4

Learning to program 12/04/2010

One thing you should know is how to run commands from your operating system’'s command prompt.
In Windows this is variously known as a DOS box, the MS DOS Window or MS-DOS Prompt, or
occasionally, nowadays, the CMD Box. Basically it's a black window with a white text prompt that
usually says C: \ W NDOWS> and you can start it by going to the St ar t - >Run dialog and typing

CMVD into the entry box and hitting OK. If you use Linux then you should know all about terminal
windows and on MacOS you can run the Terminal program under Mac OS X (which is found in the
Applications->Utilities folder). Therearelots of powerful shortcuts that can save you typing
timeif you careto read the help files for your Operating System prompt. | won't cover those here.
One tutorial for Windows users can be found here. And a basic Unix shdll primer can be found here.

| will not be covering issues like how to create or copy text files, how to install software, or the
organization of files on a computer storage system. Frankly if you need to know those things you
probably are not at the stage of being ready to program, regardless of your desireto do so. Find a
tutorial for your computer first, then when you're confident with the above concepts revisit this site.
Remember that Windows and MacOS both have comprehensive help systems built in. Linux has a
huge amount of tutorial material on the web, Googleis your friend...

Why Python?

Python happens to be a nice language to learn. Its syntax is simple and it has some very powerful
features built into the language. It supports lots of programming styles from the very simple through
to state of the art Object Oriented and Functional techniques. It runs on lots of platforms -
Unix/Linux, MS Windows, Macintosh etc. It also has a very friendly and helpful user community. All
of these are important features for a beginner's language.

Python however is not just a beginner's language. As your experience grows you can keep on using
Python either as an end in itself or as arapid prototyping language. There are afew things that Python
is not well suited to, but these are comparatively few and far between.

| will also use VBScript and JavaScript as alternatives. The reason for thisis to show that the same
basic techniques apply regardless of the language details. Once you can program in one language you
can easily pick up anew onein afew days. Why those languages? Well, for a start they have very
different styles to Python so form a useful contrast, and more prosaically if we accept that most Web
surfers who are a so beginners are using PCs with Microsoft Windows installed, thereisa
programming environment built in to the operating system called Windows Scripting Host which has
support for VBScript and JScript (which is Microsoft's variant of JavaScript). In addition, anyone
using Microsoft's web browser can also use these languages within their browser and, in fact,
JavaScript should work in almost any browser on any Operating System. Initially well only look at
how to run VB Script and JavaScript inside a browser, but | will beintroducing WSH in some of the
later topics as an optional extra.

Other resources

There are other Web sites trying to do this in other languages (and in thetime since | originally
created this site a few other Python sites have appeared). There are also lots of tutorials for those who
already know how to program but want to learn a new language. This section contains links to some
of thosethat | think are interesting!

* Theofficial Python language web site with online documentation, latest downloads etc.

* Theofficia Perl web site- Perl isanatural competitor to Python in capability but is, | think,
harder to learn.

* JavaScript. is the source for information about JavaScript.

D:\DOC\HomePage\l 2p\tutintro.htm Page5

Learning to program 12/04/2010

* If you don't much like my style aweb site with similar aimsisthe How to think likea
Computer Scientist produced by Jeff Elkner who uses Python in his high School classes. It
seems alittle bit less comprehensive than mine, but maybe I'm just biased :-)

* Finaly, if you are an adventurous sort with a good math background you might try the How
to Design Programs web site which is also available as a paper book. It teaches a dialect of the
Lisp programming language called Scheme. It is very effective at introducing a methodical
approach to building programs.

¢ Sincel first wrote this tutor a whole bunch of non programmer's tutorials have appeared and
they are listed on the Python web site, so you can take your pick. Most of them focus on just
getting you programming in Python so they don't explain so much of thejargon as | do, nor do
they explain the Computer Science theory like Jeff does. Y ou can find the page here.

Next Contents

If you have any ideas on how to improve this tutorial
pleasefed freeto email me

¥

D:\DOC\HomePage\l 2p\tutintro.htm Page 6

Wheat do | nead to be a programmer? 12/04/2010

What do | need?

|What will we cover?

|The character and mindset of a programmer, the programming environments used in the tutor.

Generally

In principle you don't need anything to do this course other than an Internet enabled computer - which
| assume you have if you are reading this in the first place! The other thing that is useful is the right
mind set to program. What | mean by that is an innate curiosity about things, coupled to alogical way
of thinking. These are both essential requirements for a successful programmer.

The curiosity factor comes into play in looking for answers to problems and being willing to dig
around in sometimes obscure documents for ideas and information needed to compl ete a task.

Thelogical thinking comes into play because computers areintrinsically stupid. They can't really do
anything except add single digits together and move bytes from one place to another. Luckily for us
some talented programmers have written lots of programs to hide this basic stupidity. But of course as
aprogrammer you may well get into a new situation where you have to face that stupidity in its raw
state. At that point you have to think for the computer. Y ou have to figure out exactly what needs to
be done to your data and when.

So much for the philosophy! However if you want to get the best from the tutorial you will want to
follow along, either typing in the examples by hand or cutting and pasting from the Web page into
your text editor. Then you can run the programs and see the results. To do that you will need to have
Python installed on your system (and for the VB Script/JScript examples you'll need a browser capable
of running those languages. Almost any modern browser can run JavaScript.)

Python

Python version 3 is the latest release at the time of writing. The Python download is quite big (about
13Mb for the Windows binary version) but it does include all the documentation and lots of tools,
some of which well look at later in the tutorial. Make sure you pick the one that matches your
system.

For Linux/Unix you can get the source and build it - see your sys admin!! It also comes pre-built (and
pre-installed) in most Linux distributions these days and packaged versions (for Red Hat, Mandrake,
Suse and Debian) can be found too. In fact you may well find that many of the system admin tools
you use on Linux are actually written in Python.

The master download site for Python is:
http://www.python.org/downl oad

Windows and MacOS users might prefer the ActiveState version which normally comes with some
platform specific extras bundled with the core program. However at the time of writing the extras
have not been made available for Python v3 so | recommend sticking to the official web site for now.
But, by the time you read this, things might have changed, so it might be worth just checking first.

VBScript and JavaScript

D:\DOC\HomePage\l 2p\tutneeds.htm Pege 7

What do | ned to be a programmer? 12/04/2010

As | said earlier most browsers can run JavaScript without any problems. VBScript will only work in
Microsoft's Internet Explorer. You don't need to install anything for these languages, either you have
them (on Windows boxes) or you don't (JavaScript only on Linux/MacOS). The only thing to watch
out for isthat some paranoid system administrators occasionally turn off the scripting feature of the

browser for security purposes, but since so many web sites use JavaScript nowadays that's pretty
unlikely.

And that's it. Bring your brain, a sense of humor and start programming....

| Points to remember

* You need logical thinking and curiosity to program
* Python, JavaScript and VB Script(on Windows only) are al freely available
Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutneads.htm Page 8

Wheat is programming? 12/04/2010

What is Programming?

|What will we cover?

An introduction to the terminology of computing plus some history and a brief ook at the structure
of a computer program.

Back to Basics
Computer Programming is the art of making a computer do what you want it to do.

At the very simplest levd it consists of issuing a sequence of commands to a computer to achieve an
objective. In the Microsoft world MS DOS users used to create text files with lists of commands
called batch files. These simply executed the sequence of commands as a group or batch, hence the
name. Thefiles had an extension of .BAT and so were sometimes called BAT files. Y ou can still
produce these in Windows environments today but in practice they are rarely seen.

AS an example, you might be producing a document (such as this tutorial) which comprises lots of
separate files. Your word processor may produce backup copies of each file as it saves a new version.
At the end of the day you may want to put the current version of the document (all the latest files)
into a'backup' directory/folder. Finally, to tidy up, delete all the word processor's backup files ready
to start work the next day. A simple BAT fileto do this would be:

COPY *. HTM BACKUP
DEL *. BAK

If the file were called SAVE.BAT then at the end of each day | could simply type SAVE at a DOS
prompt and the files would be saved and backups deleted. This is a program.

Note: Users of Linux or other operating systems have their own versions of these files often known as
shell scripts. Unix shell scripts are much more powerful than DOS BAT files, and support most of the
programming techniques that we will be discussing in this course.

L et me say that again

If you were alittle daunted by that, please don't be. A computer programis simply a set of
instructions to tell a computer how to perform a particular task. It's rather like arecipe: a set of
instructions to tell a cook how to make a particular dish. It describes the ingredients (the data) and the
sequence of steps (the process) needed to convert the ingredients into a cake or whatever. Programs
arevery similar in concept.

A little history

Just as you speak to afriend in alanguage so you 'speak’ to the computer in alanguage. The only
language that the computer understands is called binary and there are several different dialects of it -
which is why that cool MacOS program won't run on your Windows PC and vice versa. Binary is
unfortunately very difficult for humans to read or write so we have to use an intermediate |anguage
and get it translated into binary for us. Thisis rather like watching the American and Russian
presidents talking at a summit meeting - One speaks in English, then an interpreter repeats what has
been said in Russian. The other replies in Russian and the interpreter again repeats the sentence, this
timein English.

D:\DOC\HomePage\l 2p\tutwhat.htm Page 9

Wheat is programming? 12/04/2010

Oddly enough the thing that translates our intermediate language into binary is also called an
interpreter. And just as you usually need a different interpreter to translate English into Russian than
you do to translate Arabic into Russian so you need a different computer interpreter to translate
Python into binary from the one that translates VB Script into binary.

The very first programmers actually had to enter the binary codes themselves, thisis known as
machine code programming and is incredibly difficult. The next stage was to create a translator that
simply converted English equivalents of the binary codes into binary so that instead of having to
remember that the code 001273 05 04 meant add 5 to 4 programmers could now write ADD

5 4. Thisvery simpleimprovement made life much simpler and these systems of codes were really the
first programming languages, one for each type of computer. They were known as

assembler languages and Assembler programming is still used for a few specialized programming
tasks today.

Even this was very primitive and still told the computer what to do at the hardware level - move data
from this memory location to that memory location, add this byte to that byte etc. (Binary datais
represented as a stream of binary digits or bits, and for convenience these are grouped into sets of
eight which are called bytes or occasionally octets. Bytes traditionally were used to represent the
characters of text, one byte per letter.) Programming this way was still very difficult and took alot of
programming effort to achieve even simple tasks.

Gradually computer scientists developed higher level computer languages to make the job easier. This
was just as well because at the same time users were inventing ever more complex jobs for computers
to solvel This competition between the computer scientists and the usersis still going on and new
languages keep on appearing. This makes programming interesting but also makes it important that as
a programmer you understand the concepts of programming as well as the pragmatics of doing it in
one particular language.

I'll discuss some of those common concepts next, but we will keep coming back to them as we go
through the course.

The common features of all programs

A long time ago a man called Edsger Dijkstra came up with a concept called structured programming.
This said that all programs could be structured in the following four ways:

® Sequences of instructions:

Step |
v
Step 2
v
Step 3
v
Step 4

Here the program flows from one step to the next in strict sequence.

® Branches;

D:\DOC\HomePage\l 2p\tutwhat.htm Page 10

Wheat is programming? 12/04/2010

Path 1

Test
Condition

Step 1

Path 2

Here the program reaches a decision point and if the result of the test is true then the program
performs theinstructions in Path 1, and if false it performs the actions in Path 2. Thisisaso
known as a conditional construct because the program flow is dependent on the result of a
test condition.

* Loops.

W
oo
=
J—_.: Test
.' ¥ .
B Condition
oo
]

In this construct the program steps are repeated continuously until sometest conditionis
reached, at which point control then flows past the loop into the next piece of program logic.

®* Modules;

D:\DOC\HomePage\l 2p\tutwhat.htm Page11

Wheat is programming? 12/04/2010

Step 1

:

-~

S[E-p 2
¢ |

Step 3 |

:

Step 4

Shared Module

Here the program performs an identical sequence of actions several times. For convenience
these common actions are placed in a module, which is akind of mini-program which can be
executed from within the main program. Other names for such a module are: sub-routine,
procedure or function.

Along with these structures programs also need a few more features to make them useful :

¢ Data(wetakeacloser look at datain the Raw Materials topic.)
* Operations (add, subtract, compare etc.

- we also take alook at the operations we can perform on datain the Raw Materials topic.)
* Input/Output capability (e.g. to display results

- we look at how to read datain the "Talking to the User" and Handling Files topics.)

Once you understand those concepts and how a particular programming language implements them
then you can write a program in that language.

Let'sclear up some ter minology

We already said that programming was the art of making a computer do what you want, but what is a
program?

In fact there are two distinct concepts of a program. Thefirst is the one perceived by the user - an
executablefilethat isinstalled and can be run repeatedly to perform atask. For example users speak
of running their "word processor program”. The other concept is the program as seen by the
programmer, thisis the text file of instructions to the computer, written in some programming
language, that can be translated into an executable file. So when you talk about a program always be
clear about which concept you mean.

Basically a programmer writes a program in a high level language which is interpreted into the bytes
that the computer understands. In technical speak the programmer generates source code and the
interpreter generates object code. Sometimes object code has other names like: P-Code, binary
code or machine code.

D:\DOC\HomePage\l 2p\tutwhat.htm Page 12

Wheat is programming? 12/04/2010

The translator has a couple of names, one being the interpreter and the other being the compiler.
These terms actually refer to two different techniques of generating object code from source code. It
used to be the case that compilers produced object code that could be run on its own (an executable
file - another term) whereas an interpreter had to be present to run its program as it went along. The
difference between these terms is now blurring however since some compilers now require
interpreters to be present to do afinal conversion and some interpreters simply compile their source
code into temporary object code and then execute it.

From our perspective it makes no real difference, we write source code and use atool to allow the
computer to read, translate and executeit.

The structure of a program

The exact structure of a program depends on the programming language and the environment that
you run it on. However there are some general principles:

* A loader - every program needs to be loaded into memory by the operating system. The |oader
does this and is usually created by the interpreter for you.

¢ Datadefinitions - most programs operate on data and somewhere in the source code we need
to define exactly what type of data we will be working with. Different languages do this very
differently.

¢ Statements - these are the core of your program. The statements actually manipulate the data
we define and do the calculations, print the output etc.

Most programs follow one of two structures:
Batch programs

These are typically started from a command line (or automatically via a scheduler utility) and tend to
follow a pattern of:

Initialize

Fead Data

v

Process Data

v

Chatput Eesults

That is, the program will typically start off by setting its internal state, perhaps setting totals to zero,
opening the needed files etc. Onceit is ready to start work it will read data either from the user by
displaying prompts on a screen or from a data file. Most commonly a combination is used whereby the

D:\DOC\HomePage\l 2p\tutwhat.htm Page 13

Wheat is programming? 12/04/2010

user provides the name of the data file and the real datais read from thefile. Then the program does
the actual data processing involving meth or data conversion or whatever. Finally the results are
produced, either to a screen display or, perhaps, by writing them back to afile.

All the programs we write in the early parts of this tutorial will be batch style programs.
Event driven programs

Most systems with a Graphical User Interface or GUI (eg. Microsoft Windows or MacOS) and
embedded control systems - like your Microwave, camera etc. are event driven. That is the operating
system sends events to the program and the program responds to these as they arrive. Events can
include things a user does - like clicking the mouse or pressing a key - or things that the system itself
does like updating the clock or refreshing the screen.

Event driven programs generally look like:

Initialisation

Event o Teenfe Core
Loop Cveats > Functionality

o] — U1 255 1]

Finalisation

In this configuration the program again starts off by setting up its internal state, but then control is
handed off to the event loop - which is usually provided by the operating environment (sometimes
referred to as the runtime). The program then waits for the event loop to detect user actions which it
translates to events. These events are sent to the program to deal with one at atime. Eventually the
user will perform an action that terminates the program, at which point an Exit Event will be created
and sent to the program.

We look at event loops and event driven programming in the "Advanced Topics" section and again in
the GUI programming topic.

Pointsto remember

D:\DOC\HomePage\l 2p\tutwhat.htm Page 14

Wheat is programming? 12/04/2010

* Programs control the computer

* Programming languages allow us to 'speak’ to the computer at alevel that is closer to how
humans think than how computers 'think'

* Programs operate on data

* Programs can be either Batch oriented or Event driven

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutwhat.htm Page 15

Learning to Program 12/04/2010

Welcometo the Learning to Program Website

Thisweb siteis designed to help total beginners learn to program. There are two tutorials to choose
from. "Version 2" on uses Python Version 2 as the programming language, along with VBScript and
Javascript, while "Version 3" uses Python Version 3! At the time of writing | recommend that total
beginners use Version 2 because Python Version 3 is still alittle bit too immature, however that
situation is changing rapidly and if you fed adventurous by all means give V3 ago.

Version 2Version 3

insert Stop Press Here

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutstart.htm Page 16

Simple sequences 12/04/2010

Simple Sequences

| What will we cover?

Single statements

The use of Python as a calcul ator

Using parentheses to get the correct result
Using format strings to print complex output
How to quit Python from within a program.

A simple sequence of instructions is the most basic program you can write. The simplest sequenceis
one containing a single programme statement. A statement is usually entered all on oneline, although
occasionally they can spill over onto two or morelines. A statement is a group of words and symbols
that is meaningful to theinterpreter, it's abit like a sentence in natural language. We will try out some
of these now. The examples will show what you should type at the '>>>" Python prompt, along with
the result, and the following paragraph will explain what happens.

Displaying output

Thefirst thing we need to learn is how to get Python to display some information. Without that we
would not know what the computer had done and it would all be pretty pointless!

>>> print('Hello there!')
Hel | o there!

Note: Thefirst thing to noticeis that you don't need to type the space between the >>> and the 'print’
- Python puts that there for you. The part in bold is what you need to type, the second lineis the
output printed by the interpreter.

Secondly Python cares about details like whether or not you use upper or lower case. If you typed
Print instead of pri nt you would get an error because Python considers the two words to be
different. (JavaScript is also fussy about case whereas VB Script is much more forgiving, but it's best
to just get used to being very careful about case when programming.)

Thepri nt () function istheway to get Python to display its results to you. In this caseit is printing
the sequence of charactersH, e, I, 1,0, ,t,h,e, r,e,!. Suchasequenceof charactersis knownin
programming circles as a string of characters or a character string or just aplain string. The
characters must be inside parentheses, we'll discuss the significance of those later.

Y ou signify a string by surrounding it in quotes. In Python you can use either single quotes (as above)

or double quotes: "a string". This allows you to include one type of quote within a string which is
surrounded by the other type - useful for apostrophes:

>>> print("Mnty Python's Flying Circus has a ' withinit...")
Monty Python's Flying Crcus has a ' withinit...

JavaScript and VBScript are both a bit more fussy about which types of quotes you can use and
where. In both of those languages | recommend sticking to double quotes where possible.

It's not just characters that can be printed:
Displaying Arithmetic Results

D:\DOC\HomePage\l 2p\tutseql.htm Page 17

Simple sequences 12/04/2010

>>> print(6 + 5)
11

Here we have printed the result of an arithmetic operation - we added six and five. Python recogni zed
the numbers as such and the plus sign and did the sum for us. It then printed the result.

So straight away you have a use for Python: it's a handy 'pocket cal culator'!
Try afew more cal cul ations. Use some other arithmetic operators:

¢ subtract (-)
¢ multiply (*)
¢ divide (/)

We can combine multiple expressions like this:

>>> print(((6 * 5 + (7 - 5) / (7 +1))

4.0

Notice the way | used parentheses to group the numbers together. Python sees this as:

((6 *5) +(7-25)) /1 (7+1)
=> (30 + 2) / 8

= 32/ 8

=> 4

What happens if you type the same sequence without the parentheses?

>>> print(6 * 5+ 7 -5/ 7+ 1)
37.2857142857

This is because Python will evaluate the multiplication and division before the addition and
subtraction. So Python sees it as:

(6*5) + 7 - (5/7) + 1
=> 30 +7 - 0.7143 + 1
=> 37 - 0.7143 + 1

=> 38 - 0.7143

=> 37.2857. ..

Thisis usually what you would expect mathematically speaking but it may not be what you expect as
a programmer! Most programming languages have rules to determine the sequence of eval uation of
operations and this is known as operator precedence. You will need to look at the reference
documentation for each language to see how it works. With Python it's usually what logic and
intuition would suggest, but occasionaly it won't be...

As agenera ruleit's safest to include the parentheses to make sure you get what you want when
dealing with long series of sumslikethis.

One other thing to note:

>>> print(5/2)
2.5

D:\DOC\HomePage\l 2p\tutseql.htm Page 18

Simple sequences 12/04/2010

Which is pretty much what you would expect. But if you want to keep with whole numbers you can
find the whol e result and remainder by using the// sign like a division operator. Python will print the
dividend:

>>> print(5//2)
2

And to get the remainder we use the modul o operator (%9:

>>> print (5%)
1

>>> print(7//4)
1

>>> print (7%)
3

% is known as the modulo or mod operator and in other languages is often seen as MOD or similar. In
fact in Python we can get both result(the dividend) and remai nder(modul o) by using the
di vnod() function:

>>> print(divmod(7,4))
(1, 3)

Experiment and you will soon get the idea. Why bother? Well, it turns out that so called integer
arithmetic is very useful in programming. As a simple example we can tell whether a number is odd or
even by dividing by two and checking whether the remainder was zero (i.e. it is even) or not (so it
must be odd). Likethis:

>>> print(47 %2)
1

So we know 47 is odd. Now you could probably tell that just by looking at the last digit, 7. But
imagine you were reading the data from a file or a user was typing it in. Then your program has to
figure out whether it's odd or even by itself. Y ou, the programmer, can't help it out by checking
visually. That's one occasion when modulo (%9 comes in very handy.

Mixing Strings and Numbers

>>> print('The total is: ', 23+45)
The total is: 68

Y ou've seen that we can print strings and numbers. Now we combine the two in one print statement,
separating them with a comma. We can extend this feature by combining it with a useful Python trick
for outputting data called aformat string:

>>> print("The sumof %l and % is: %" % (7,18, 7+18))
The sumof 7 and 18 is: 25

D:\DOC\HomePage\l 2p\tutseql.htm Page 19

Simple sequences 12/04/2010

In this statement the format string contains '%' markers within it. These have nothing to do with the
modul o operator we discussed above, instead they have a special meaning when used within a string
like this. Unfortunately this double usage of %means you have to read carefully to determine the
context and therefore what role the %is playing!

The letter d after the %tels Python that a ‘decimal number' should be placed there. The valuesto fill in
the markers are obtained from the val ues inside the parenthesi sed expression following the %sign on
itsown. It isimportant that the number of values in the final parentheses matches the number of %
markers inside the string. (If this al sounds a little confusing practice a few variations on the line
above and with the information following and it will soon start to make sense.)

There are other |etters that can be placed after the % markers. Some of these include:

%s - for string

%x - for hexadecimal number

%0.2f - for areal number with a maximum of 2 decimal places
%04d - pad the number out to 4 digits with 0's

The Python documentation gives lots more... Note however that this style of formatting has been
replaced in Python v3 by an even more powerful (but more complex) style which we will discussin
more detail when we get to the Handling Text topic later.

In fact you can print any Python object with the print function. Sometimes the result will not be what
you hoped for (perhaps just a description of what kind of object it is) but you can always print it.

Powering Up

>>> jnport sys

Now thisis astrange one. If you'vetried it you'll seethat it apparently does nothing. But that's not
really true. To understand what happened we need to look at the architecture of Python (for non
Python programmers, bear with me there will be a similar mechanism available to you too!)

When you start Python there are a bunch of functions and commands availableto you called built-ins,
because they are built in to the Python core. However Python can extend the list of functions available
by incorporating extension modules. - It's a bit like buying a new tool in your favourite DIY store and

adding it to your tool box. Thetool isthesys part and thei nport operation puts it into the tool

box.

In fact what this command does is makes avail able a whole bunch of new 'tools' in the shape of Python
functions which are defined in amodule called 'sys'. Thisis how Python is extended to do all sorts of
clever things that are not built in to the basic system. In fact there are over a hundred modules in the
standard library that you get with Python. Y ou can even create your own modules and import and
use them, just like the modules provided with Python when you installed it. Well get to that later.
There are also many more that you can download from the internet. In fact, any time you start a new
project that is not covered by modules in the standard library, remember to do a Google search, there
is probably something out there that can help you.

So how do we use these new tool s?

A Quick exit

D:\DOC\HomePage\l 2p\tutseql.htm Page 20

Simple sequences 12/04/2010

>>> sys.exit()

Whoops! What happened there? Simply that we executed the exi t function defined in the
sys module. That statement causes Python to exit.

Note 1: Normally you exit Python by typing the End Of File(EOF) character at the >>> prompt -
CTRL-Z on DOS or CTRL-D on Unix. In a development tool you exit using the Fi | e- >Exi t menu
etc as usudl.

Note 2: If you try this inside a devel opment tool like IDLE the tool will probably catch the attempt to
exit and display a message saying something about SystemExit. Don't worry, that means the program
isworking and thetoal is just saving you the bother of restarting from scratch.

Noticethat exi t had parentheses after it. That's because exit is a function defined in sys and when
we call a Python function we need to supply the parentheses even if there's nothing inside them!

Try typing sys. exi t without the parentheses. Python responds by telling you that exit is a function
rather than by executing it!

Onefina thing to noticeis that the last two statements are actually only useful in combination. That
is, to exit from Python other than by typing EOF you need to type:

>>> jnport Ssys
>>> sys.exit()

Thisis a sequence of two statements! Now we're getting closer to real programming...
Using JavaScript

Unfortunately in JavaScript there is no easy way to type the commands in and see them being
executed immediately as we have been doing with Python. However we can type all of the simple
commands we used above into asingle HTML fileand load it into a browser. That way we will see
what they look like in JavaScript:

<ht M ><body>

<script type="text/javascript">

docunent. wite(' Hello therel
");

docunent. wite("Monty Python\'s Flying Circus has a \' within it
");
document . write(6+5);

docunent. wite("
");

docunent.wite(((8 * 4) + (7 - 3)) [/ (2 + 4));
docunent. wite("
");

docunent . wite(5/2);

docunent . wite("
");

document . wite(5 %2);

</script>

</ body></htm >

And the output should look like this:

D:\DOC\HomePage\l 2p\tutseql.htm Page 21

Simple sequences 12/04/2010

Notice that we had to write
 to force anew line. That's because JavaScript writes its output as
HTML and HTML wraps lines into as wide aline as your browser window will allow. To forcealine
break we have to use the HTML symbol for anew line which is
.

And VBScript too...

Like JavaScript we have to create a file with our VB Script commands and open it in a browser. The
commands that we have seen, written in VBScript ook like this:

<ht M ><body>

<script type="text/vbscript">

MsgBox "Hello There!"

MsgBox "Monty Python's Flying Circus has a ' init"
MsgBox 6 + 5

MsgBox ((8 * 4) + (7 - 3)) / (2 + 4)

MsgBox 5/ 2

MsgBox 5 MOD 2

</script>

</ body></ ht i >

And the output should consist of lots of dialog boxes each presenting the output from one line of the
program.

One point to noteis that you cannot start a string using a single quote in VBScript (Well seewhy in a
later topic) although you can include single quotes inside double quoted strings. To include a double
guote inside a double quoted string we have to use a function called Chr which returns the character
for agiven ASCII character code. It's all very messy but an example should show how it works:

<script type="text/vbscript">

Dim qt

gt = Chr(34)

MsgBox gt & "Go Away!" & qt & " he cried"
</script>

Note that you can find out the ASCII code for any character by using the Character Map applet in
Windows, or by visiting this web site and looking up the decimal value or, as alast resort, by using
the following bit of JavaScript(!) and replacing the double quote character with the character you
want:

<script type="text/javascript">

var code, chr ="""; [/ put the character of interest here

code = chr. char CodeAt (0);

docurment . wite("
The ASCI|I code of " + chr +" is " + code);
</script>

Don't worry about what it means just yet, well get to it eventually for now just useit should you be
forced to find out an ASCII value.

That's our first ook at programming, it wasn't too painful was it? Before we continue though we need
to take alook at the raw materials of programming, namely data and what we can do with it.

| Points to remember

D:\DOC\HomePage\l 2p\tutseql.htm Page 22

Simple sequences 12/04/2010

Even a single command is a program

Python does math almost the way you'd expect

To get afractional result you must use a fractional number

Y ou can combine text and numbers using the %format operator
Quit withi nport sys; sys.exit()

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutseql.htm Page 23

Data 12/04/2010

The Raw Materials

| What will we cover?

®* What Datais

What Variables are

Data Types and what to do with them
Defining our own data types

I ntroduction

In any cregtive activity we need three basic ingredients: tools, materials and techniques. For example
when | paint the tools are my brushes, pencils and pal ettes. The techniques are things like ‘washes’,
wet on wet, blending, spraying etc. Finaly the materials are the paints, paper and water. Similarly
when | program, my tools are the programming languages, operating systems and hardware. The
techniques are the programming constructs that we discussed in the previous section and the material
isthe datathat | manipulate. In this chapter we look at the materials of programming.

Thisis quite along section and by its nature you might find it a bit dry, the good news is that you
don’'t need to read it all at once. The chapter starts off by looking at the most basic data types
available, then moves on to how we handle collections of items and finally looks at some more
advanced material. It should be possible to drop out of the chapter after the collections material, cover
a couple of the following chapters and then come back to this one as we start to use the more
advanced bits.

Data
Datais one of those terms that everyone uses but few really understand. My dictionary defines it as:
"facts or figures fromwhich conclusions can be inferred; information™

That's not too much help but at |east gives a starting point. Let’s seeif we can clarify things by
looking at how datais used in programming terms. Datais the “stuff”, the raw information, that your
program manipul ates. Without data a program cannot perform any useful function. Programs

mani pul ate data in many ways, often depending on the type of the data. Each data type also has a
number of operations - things that you can do to it. For example we' ve seen that we can add numbers
together. Addition is an operation on the number type of data. Data comes in many types and we' ll
look at each of the most common types and the operations available for that type:

Variables

Data s stored in the memory of your computer. You can liken this to the big wall full of boxes used in
mail rooms to sort the mail. Y ou can put aletter in any box but unless the boxes are labeled with the
destination address it’s pretty meaningless. Variables are the |abel's on the boxes in your computer's
memory.

Knowing what data looks likeisfine, so far as it goes but to manipulate it we need to be able to
access it and that’s what variables are used for. In programming terms we can create instances of data
types and assign them to variables. A variableis areference to a specific area somewhere in the
computers memory. These areas hold the data. In some computer languages a variable must match the

D:\DOC\HomePage\l 2p\tutdata.htm Page 24

Data 12/04/2010

type of data that it points to. Any attempt to assign the wrong type of data to such a variable will
cause an error. Some programmers prefer this type of system, known as static typing because it can
help to prevent some subtle bugs which are hard to detect.

Variable names follow certain rules dependent on the programming language. Every language has its
own rules about which characters are alowed or not allowed. Some languages, including Python and
JavaScript, take notice of the case and are therefore called case sensitive languages, others, like
VBScript don't care. Case sensitive languages require a little bit more care from the programmer to
avoid mistakes, but a consistent approach to naming variables will help alot. One common style
which wewill usealot isto start variable names with alower case letter and use a capital |etter for
each first letter of subsequent words in the name, like this:

aVeryLongVari abl eNaneW t hCapi t al i sedStyl e

We won't discuss the specific rules about which characters are legal in our languages but if you
consistently use a style like that shown you shouldn't have too many problems.

In Python a variable takes the type of the data assigned to it. It will keep that type and you will be
warned if you try to mix datain strange ways - like trying to add a string to a number. (Recall the
example error message? It was an example of just that kind of error.) We can change the type of data
that a variable points to by reassigning the variable.

>>>q =7 # ¢ is now a nunber

>>> print(q)

-

>>> ¢ = "Seven" # reassign q to a string
>>> print(q)

Seven

Note that the variable g was set to point to the number 7 initially. It maintained that value until we
made it point at the character string " Seven" . Thus, Python variables maintain the type of whatever
they point to, but we can change what they point to simply by reassigning the variable. We can check
the type of avariable by using thet ype() function:

>>> print(type(q))
At the point of reassignment the original datais'lost' and Python will erase it from memory (unless

another variable points at it too) this erasing is known as garbage collection.

Garbage collection can be likened to the mail room clerk who comes round once in awhile and
removes any packets that arein boxes with no labds. If he can't find an owner or address on the
packets he throws themin the garbage. Let’s take alook at some examples of data types and see how
all of thisfits together.

VBScript and JavaScript variables
Both JavaScript and VBScript introduce a subtle variation in the way we use variables. In both

languages it is considered good practice that variables be declared before being used. Thisisa
common feature of compiled languages and of strictly typed languages. Thereis abig advantagein

D:\DOC\HomePage\l 2p\tutdata.htm Page 25

Data 12/04/2010

doing thisin that if a spelling error is made when using a variable the translator can detect that an
unknown variable has been used and flag an error. The disadvantage is, of course, some extra typing
required by the programmer.

VBScript

In VBScript the declaration of a variableis done viathe Di mstatement, which is short for Dimension.
Thisis athrowback to VBScript's early roots in BASIC and in turn to Assembler languages before
that. In those languages you had to tell the assembler how much memory a variable would use - its
dimensions. The abbreviation has carried through from there,

A variable declaration in VBScript looks like this:

Di m aVari abl e

Once declared we can proceed to assign values to it just like we did in Python. We can declare severa
variables in the one Di mstatement by listing them separated by commeas:

Di m aVari abl e, another, aThird

Assignment then looks like this:

aVari able = 42
another = "This is a nice short sentence.”
aThird = 3.14159

Thereis another keyword, Let that you may occasionally see. Thisis another throwback to BASIC
and becauseit's not really needed you very rardly seeit. In case you do, it's used likethis:

Let avVariable = 22
| will not beusing Let inthistutor.
JavaScript

In JavaScript you can pre-declare variables with thevar keyword and, like VBScript, you can list
severa variablesinasinglevar statement:

var aVari abl e, another, aThird;

JavaScript also allows you to initialize (or define) the variables as part of thevar statement. Likethis:

var aVariable = 42;
var another = "A short phrase", aThird = 3. 14159;

This saves alittle typing but otherwise is no different to VBScript's two step approach to variables.
You can aso declare and initialise JavaScript variables without using var , in the same way that you
do in Python:

aVari abl e = 42;

D:\DOC\HomePage\l 2p\tutdata.htm Page 26

Data 12/04/2010

But JavaScript afficianados consider it good practice to usethevar statement, so | will do sointhis
tutor.

Hopefully this brief look at VB Script and JavaScript variables has demonstrated the difference
between declaration and definition of variables. Python variables are declared by defining them.

Primitive Data Types

Primitive data types are so called because they are the most basic types of data we can manipulate.
More complex data types are really combinations of the primitive types. These are the building blocks
upon which all the other types are built, the very foundation of computing. They include | etters,
numbers and something called a bool ean type.

Character Strings

We've aready seen these. They areliterally any string or sequence of characters that can be printed on
your screen. (In fact there can even be non-printable control characterstoo).

In Python, strings can be represented in several ways:
With single quotes:

"Here is a string'

With double quotes:

"Here is a very simlar string"

With triple double quotes:

' Here is a very long string that can
if we wish span several lines and Python wll
preserve the lines as we type them.."""

One special use of the latter formis to build in documentation for Python functions that we create
ourselves - welll seethislater. (You can usetriple single quotes but | do not recommend that since it
can become hard to tell whether it is triple single quotes or a double quote and a single quote
together.)

Y ou can access the individual charactersin astring by treating it as an array of characters (see arrays
below). There are also usually some operations provided by the programming language to help you
manipul ate strings - find a sub string, join two strings, copy one to another etc.

It is worth pointing out that some languages have a separate type for characters themselves, that is for
asingle character. In this case strings are literally just collections of these character values. Python by
contrast just uses a string of length 1 to store an individual character, no special syntax is required.

String Operators

There are a number of operations that can be performed on strings. Some of these are built in to
Python but many others are provided by modules that you must import (as we did with sys in the
Simple Sequences section).

String operators

D:\DOC\HomePage\l 2p\tutdata.htm Page 27

Data 12/04/2010

|Oper ator | Description

|Sl + S2 |Concatenalion of S1 and S2
|Sl *N |N repetitions of S1

We can seethese in action in the following examples:

>>> print('Again and ' + 'again') # string concatenation
Agai n and again
>>> print('Repeat ' * 3) # string repetition

Repeat Repeat Repeat
>>> print("Again' + ('and again' * 3)) # conmbine '+ and '*'
Agai n and agai n and agai n and again

We can a'so assign character strings to variables:

>>> sl = 'Again '

>>> s2 = "and again '

>>> print(s1 + (s2 * 3))

Agai n and agai n and agai n and again

Notice that the last two examples produced the same output.

There arelots of other things we can do with strings but we'll ook at those in more detail in alater
topic after we've gained a bit more basic knowledge. One important thing to note about strings in
Python is that they cannot be modified. That is, you can only create a new string with some of the
characters changed but you cannot directly alter any of the characters within a string. A data type that
cannot be altered is known as an immutabl e type.

VBScript String Variables

In VBScript al variables are called variants, that is they can hold any type of data and VBScript tries
to convert it to the appropriate type as needed. Thus you may assign a number to avariable but if you
useit asastring VBScript will try to convert it for you. In practice thisis similar to what Python's
print command does but extended to any VB Script command. Y ou can give VBScript a hint that you
want a numeric value treated as a string by enclosing it in double quotes:

<script type="text/vbscript">
MyString = "42"

MsgBox MyString

</script>

We can join VBScript strings together, a process known as concatenation, using the & operator:

<script type="text/vbscript">
MyString = "Hello" & "World"
MsgBox MyString

</script>

JavaScript Strings

D:\DOC\HomePage\l 2p\tutdata.htm Page 28

Data 12/04/2010

JavaScript strings are enclosed in either single or double quotes. In JavaScript you should
declare variables before we use them. Thisis easily done using thevar keyword. Thus to declare and
define two string variables in JavaScript we do this:

<script type="text/javascript">
var aString, another;

asString = "Hello ";

anot her = "Worl d";
docunent.wite(aString + another)
</script>

Finally JavaScript also alows usto create String objects. We will discuss objects alittle later in this
topic but for now just think of String objects as being strings with some extra features. The main
differenceis that we create them slightly differently:

<script type="text/javascript">

var aStringQoj, anotherQj;

aStringObj = String("Hello ");
anotherCbj = String("Wrld");

document .write(aStri ngObj + anot herQbj);
</script>

Y ou are probably thinking thats an awful lot of extra typing to achieve the same as before? You
would beright in this case, but string objects do offer some advantages in other situations as we will
see later.

Integers

Integers are whole numbers from a large negative val ue through to a large positive value. That’s an
important point to remember. Normally we don’t think of numbers being restricted in size but on a
computer there are upper and lower limits. The size of this upper limit is known as MAXINT and
depends on the number of bits used on your computer to represent a number. On most current
computers and programming languages it's 32 bits so MAXINT is around 2 billion (however
VBScript is limited to about +/-32000).

Numbers with positive and negative values are known as signed integers. Y ou can also get unsigned
integers which are restricted to positive numbers, including zero. This means thereis a bigger
maximum number available of around 2 * MAXINT or 4 billion on a 32 bit computer since we can
use the space previously used for representing negative numbers to represent more positive numbers.

Because integers are restricted in size to MAXINT adding two integers together where thetotal is
greater than MAXINT causes the total to be wrong. On some systems/languages the wrong valueis
just returned as is (usually with some kind of secret flag raised that you can test if you think it might
have been set). Normally an error condition is raised and either your program can handle the error or
the program will exit. VBScript and JavaScript both convert the number into a different format that
they can handle, albeit with a small loss of accuracy. Python is alittle different in that Python uses
something called a Long Integer, which is a Python specific feature allowing virtually unlimited size
integers.

>>> x = 123456700 * 34567338738999
>>> print(X)
4267569568498977843300

>>> print(type(x))

D:\DOC\HomePage\l 2p\tutdata.htm Page 29

Data 12/04/2010

Notice that the result, although considered ani nt type by Python is much bigger than the value you
would normally expect from a computer. The equivalent code in VBScript or JavaScript results in the
number being displayed in a different format to the integer we expect. Well find out more about that
in the section on Real Numbers below.

<script type="text/vbscript">
D m x

X = 123456700 * 34567338738999
MsgBox CStr(x)

</script>

Arithmetic Operators

We've aready seen most of the arithmetic operators that you need in the 'Simple Sequences' section,
however to recap:
Python Arithmetic Operators

|Operator Example| Description

M +N /Addition of M and N

|M -N |Subtraction of N fromM

M * N Multiplication of M and N

M /N Division of M by N. The result will be a real number (see below)
|M % N |Modu|o: find the remainder of M divided by N

|M**N |Exponentiation: M to the power of N

We haven't seen the last one before so let’ s ook at an example of creating some integer variables and
using the exponentiation operator:

>>> |1 =2 # create an integer and assign it to il
>>> |2 = 4

>>> |3 = i1**i2 # assign the result of 2 to the power 4 to i3
>>> print(i3)

16

>>> print(2**4) # confirmthe result

16
Shortcut operators

One very common operation that is carried out while programming is incrementing a variabl€'s value.
Thus if we have avariable called x with avalue of 42 and we want to increase its value to 43 we can
doit likethis:

>>> x = 42

>>> print(X)
>>> x = x + 1
>>> print(X)

Noticetheline

D:\DOC\HomePage\l 2p\tutdata.htm Page 30

Data 12/04/2010

X =X +1

Thisis not sensible in mathematics but in programming it is. What it meansisthat x takes on the
previous value of x plus 1. If you have done alot of math this might take a bit of getting used to, but
basically the equal signin this case could be read as becomes. So that it reads: x becomesx + 1.

Now it turns out that this type of operation is so common in practice that Python (and JavaScript)
provides a shortcut operator to save some typing:

>>> x += 1
>>> print(X)

This means exactly the same as the previous assignment statement but is shorter. And for consistency
similar shortcuts exist for the other arithmetic operators:
Shortcut Operators

|Operator Example|Description
M +=N M=M +N
M -=N M=M-N
M *=N IM=M*N
M /=N M=M/N
M %= N M=M %N

VBScript Integers

As| said earlier VBScript integers are limited to alower value of MAXINT corresponding to a 16 bit
value, namely about +/- 32000. If you need an integer bigger than that you can useal ong integer
which is the same size as a standard Python integer. Thereis also abyt e typewhichis an 8 bit
number with a maximum size of 255. In practice you will usually find the standard integer type
sufficient. If the result of an operation is bigger than MAXINT then VBScript automatically converts
theresult to areal number (see below)

All the usual arithmetic operators are supported. Modulo is represented differently in VBScript, using
the MOD operator. (We actually saw that in the Simple Sequences topic.) Exponentiation too is
different with the caret (") symbol being used instead of Python's * *.

JavaScript Numbers

It will be no surprise to discover that JavaScript too has a numeric type. It too is an object as well
describe later and its called a Number, original eh? :-)

A JavaScript number can also be Not a Number or NaN. Thisis a specia version of the Number
object which represents invalid numbers, usually the result of some operation which is mathematically
impossible. The point of NaN is that it allows us to check for certain kinds of error without actually
breaking the program. JavaScript also has special number versions to represent positive and negative
infinity, arare feature in a programming language. JavaScript number objects can be either integers or
real numbers, which we look at next.

D:\DOC\HomePage\l 2p\tutdata.htm Page 31

Data 12/04/2010

JavaScript uses mostly the same operators as Python but exponentiation is done using a special
JavaScript object called Mat h. We will cover this abit later in the tutorial when we take a closer ook
at modules.

Real Numbers

These include fractions. (I'm using the OED definition of fraction here. Some US correspondents tell
me the US term fraction means something more specific. | simply mean any number that is not a
whole number). They can represent very large numbers, much bigger than MAXINT, but with less
precision. That isto say that 2 real numbers which should be identical may not seem to be when
compared by the computer. This is because the computer only approximates some of the |owest
details. Thus 5.0 could be represented by the computer as 4.9999999.... or 5.000000....01. These
approximations are close enough for most purposes but occasionally they become important! If you
get afunny result when using real numbers, bear thisin mind.

Real numbers, aso known as Floating Point numbers have the same operations as integers with the
addition of the capability to truncate the number to an integer value.

Python, VB Script and JavaScript all support real numbers. In Python we create them by simply
specifying a number with a decimal point in it, as we saw in the Simple Sequences topic. In VBScript

and JavaScript thereis no clear distinction between integers and real numbers, just use them and
mostly the language will pretty much sort itself out.

Complex or Imaginary Numbers

If you have a scientific or mathematical background you may be wondering about complex numbers?
If you haven't, you may not even have heard of complex numbers, in which case you can safely jump
to the next heading because you don't need them!' Anyhow some programming |anguages, including
Python, provide built in support for the complex type while others provide alibrary of functions which
can operate on complex numbers. And before you ask, the same applies to matrices too.

In Python a complex number is represented as:

(real +i magi naryj)

Thus a simple complex number addition looks like:

>>> M= (2+4))

>>> N = (7+6])

>>> print(M+ N)

(9+10j)

All of the integer operations also apply to complex numbers.

Neither VBScript nor JavaScript offer support for complex numbers.

Boolean Values- True and False

D:\DOC\HomePage\l 2p\tutdata.htm Page 32

Data 12/04/2010

This strange sounding type is named after a 19th century mathematician, George Boole who studied
logic. Like the heading says, this type has only 2 values - either true or false. Some |anguages support
Boolean values directly, others use a convention whereby some numeric value (often 0) represents
false and another (often 1 or -1) represents true. Up until version 2.2 Python did this, however since
version 2.3 Python supports Boolean values directly, using the values True and False.

Boolean values are sometimes known as "truth values" because they are used to test whether
something is true or not. For exampleif you write a program to backup all thefilesin a directory you
might backup each file then ask the operating system for the name of the next file. If thereare no
more files to save it will return an empty string. Y ou can then test to see if the name is an empty string
and store the result as a boolean value (Trueif it is empty, Falseif it isn't). You'll see how we would
usethat result later onin the tutorial.

Boolean (or Logical) Operators

|Operator Example|D&ecription| Effect
|A and B |AND |True if A,B are both True, False otherwise.
Trueif either or both of A,B aretrue. Falseif both A and B are
AorB OR
false
|A == |Equa|ity |True if Aisequal toB
Al=B
or Inequality (Trueif A isNOT equal to B.
A<>B
not B |Negation Trueif B isnot True

Note: the last one operates on asingle value, the others all compare two val ues.
VBScript, like Python has a Boolean type with the values True and False.

JavaScript also supports a Boolean type but this time the values are true and false (note, with a
lowercasefirst |etter).

Finally the different languages have slightly different names for the Boolean type internaly, in Python
itisbool, in VBScript and JavaScript it is Boolean. Most of the time you won't need to worry about
that because we tend not to create variables of Boolean types but simply use the results in tests.

Collections

Computer science has built a whole discipline around studying collections and their various behaviors.
Sometimes collections are called containers or sequences. In this section we will look first of all at the
collections supported in Python, VB Script and JavaScript, then we'll conclude with a brief summary
of some other collection types you might come across in other languages.

List

Weare all familiar with listsin everyday life. A list isjust a sequence of items. We can add itemsto a
list or remove items from the list. Usually, where the list is written paper we can't insert itemsin the
middle of alist only at the end. However if thelist isin eectronic format - in aword processor say -
then we can insert items anywhere in thelist.

D:\DOC\HomePage\l 2p\tutdata.htm Page 33

Data 12/04/2010

We can a'so search alist to check whether something is aready in thelist or not. But you haveto find
the item you need by stepping through the list from front to back checking each itemto seeif it's the
item you want. Lists are a fundamental collection type found in many modern programming
languages.

Python lists are built into the language. They can do all the basic list operations we discussed above
and in addition have the ability to index the e ements inside the list. By indexing | mean that we can
refer to alist element by its sequence number (assuming the first e ement starts at zero).

In VBScript there are no lists as such but other collection types which we discuss later can simulate
their features.

In JavaScript there are no lists as such but almost everything you need to do with alist can be done
using a JavaScript array which is another collection type that we discuss a little later.

List operations

Python provides many operations on collections. Nearly all of them apply to Lists and a subset apply
to other collection types, including strings which are just a special type of list - alist of characters. To
create and access alist in Python we use square brackets. Y ou can create an empty list by using a pair
of square brackets with nothing inside, or create alist with contents by separating the values with
commas inside the brackets:

>>> aglist =[]

>>> another = [1, 2, 3]
>>> print(another)
[1, 2, 3]

We can access the individual dements using an index number, where the first element is O, inside
square brackets. For example to access the third eement, which will be index number 2 since we start
from zero, we do this:

>>> print(another[2])
3

We can also change the values of the elements of alist in asimilar fashion:

>>> another[2] =7
>>> print(another)
[1, 2, 7]

Notice that the third element (index 2) changed from3to 7.

Y ou can use negative index numbers to access members from the end of thelist. Thisis most
commonly done using -1 to get the last item:

>>> print(another[-1])

7

We can add new eements to the end of alist using theappend() operation:

D:\DOC\HomePage\l 2p\tutdata.htm Pege 34

Data 12/04/2010

>>> ali st.append(42)
>>> print(aList)
[42]

We can even hold one list inside another, thus if we append our second list to thefirst:

>>> ali st. append(anot her)
>>> print(aList)
[42, [1, 2, 7]]

Notice how theresult isalist of two eements but the second element isitsef alist (as shown by the
[]'s around it). We can now access the eement 7 by using a double index:

>>> print(aList[1][2])
Z

Thefirst index, 1, extracts the second dement which isin turn alist. The second index, 2, extracts the
third dement of the sublist.

This nesting of lists oneinside the other is extremey useful sinceit effectively allows us to build tables
of data, likethis:

>>> rowl = [1, 2, 3]

>>> row2 = ['a' ,'c']
>>> table = [rowl, rov\/Z]
>>> print (tabe)

[[1,2,3], ["a","'b","c']]

>>> el ement2 = tabl e[0] [1]
>>> print(element2)
2

We could use this to create an address book where each entry was alist of name and address details.
For example, hereis such an address book with two entries:

>>> addressBook = [
["Fred', "9 Some St',' Anytown', '0123456789'],
['Rose', '"11 Nother St', 'SonePlace', '0987654321']

o]
>>>
Notice that we constructed the nested list al on oneline. That is because Python sees that the number
of opening and closing brackets don't match and keeps on reading input until they do. Thiscan bea
very effective way of quickly constructing complex data structures while making the overall structure
- alist of listsin this case - clear to the reader. (If you are using IDLE you won't seethe. . . prompt,
just ablank line)

As an exercise try extracting Fred's tel ephone number - ement 3, from the first row - remembering
that the indexes start at zero. Also try adding afew new entries of your own using the
append() operation described above.

Note that when you exit Python your datawill belost, however you will find out how to preserveit
once we reach the topic on files.

D:\DOC\HomePage\l 2p\tutdata.htm Page 35

Data 12/04/2010

The opposite of adding elementsiis, of course, removing them and to do that we use the del
command:

>>> del aList[1]
>>> print(aList)
[42]

Noticethat del does not require parentheses around the value, unlike the print function. Thisis
because del is technically acommand not a function. The distinction is subtle and you can put
parentheses around the value for consistency if you prefer, it will still work OK.

If we want to join two lists together to make one we can use the same concatenation operator ‘+' that
we saw for strings:

>>> newlLi st = aLi st + anot her
>>> print(newList)
[42, 1, 2, 7]

Notice that thisis slightly different to when we appended the two lists earlier, then there were 2
elements, the second being alist, this time there are 4 e ements because the e ements of the second list
have each, individually, been added to newLi st . Thistimeif we access e ement 1, instead of getting a
sublist, as we did previously, wewill only get 1 returned:

>>> print(newlist[1])
1

We can also apply the multiplication sign as a repetition operator to populate alist with multiples of
the same value:

>>> zerolList = [0] * 5
>>> print(zeroList)
[0, O, O, O, O]

We can find the index of a particular dement in alist usingthei ndex() operation, likethis:

>>> print([1,3,5,7].index(5))
2

>>> print([1,3,5,7].index(9))

Traceback (nost recent call last):
File "", line 1, in <nodul e>
Val ueError: list.index(x): x not in |ist

Notice that trying to find the index of something that's not in the list resultsin an error. We will ook
at ways to test whether somethingisin alist or not in alater topic.

Finally, we can determine the length of alist using the built-in1 en() function:

>>> print(len(aList))

1

>>> print(|en(newkist))
4

>>> print(len(zeroList))

D:\DOC\HomePage\l 2p\tutdata.htm Page 36

Data 12/04/2010

5

Neither JavaScript nor VBScript directly support alist type although as we will see later they do have
an Array type that can do many of the things that Python's lists can do.

Tuple

Not every language provides atuple construct but in those that do it’s extremely useful. A tupleis
really just an arbitrary collection of values which can be treated as a unit. In many ways atupleis like
alist, but with the significant difference that tuples are immutable which, you may recall, means that
you can’'t change them nor append to them once created. In Python, tuples are simply represented by
parentheses containing a comma separated list of values, like so:

>>> aTuple = (1,3,5)

>>> print(aTuple[1]) # use indexing like a |ist
3
>> aTuple[2] =7 # error, can't change a tuple’s elenents
Traceback (innernost |ast):
File "", line 1, in ?

aTuple[2] =7
TypeError: object doesn't support item assignment

The main things to remember are that while parentheses are used to define the tuple, square brackets
are used to index it and you can’t change a tuple once it's created. Otherwise most of the list
operations also apply to tuples.

Finally, although you cannot change a tuple you can effectively add members using the addition
operator because this actually creates a new tuple. Likethis:

>>> tupl = (1,2,3)

>>> tup2 = tupl + (4,) # comma to make it a tuple rather than integer
>>> print(tup2)

(1,2,3,4)

If we didn't use the trailing comma after the 4 then Python would have interpreted it as the integer 4
inside parentheses, not as a true tuple. But since you can't add integers to tuples it results in an error,
so we add the comma to tell Python to treat the parentheses as a tuple. Any time you need to
persuade Python that a single entry tuplereally is a tuple add a trailing comma as we did here.

Neither VBScript nor JavaScript have any concept of tuples.
Dictionary or Hash

In the same way that aliteral dictionary associates a meaning with aword a dictionary type contains a
val ue associated with a key, which may or may not be a string. The value can be retrieved by
‘indexing’ the dictionary with the key. Unlike aliteral dictionary, the key doesn’'t need to be a
character string (although it often is) but can be any immutabl e type including numbers and tuples.
Similarly the values associated with the keys can have any kind of datatype. Dictionaries are usually
implemented internally using an advanced programming technique known as a hash table. For that
reason a dictionary may sometimes be referred to as a hash. This has nothing to do with drugs! :-)

D:\DOC\HomePage\l 2p\tutdata.htm Page 37

Data 12/04/2010

Because access to the dictionary values is via the key, you can only put in e ements with unique keys.
Dictionaries areimmensely useful structures and are provided as a built-in type in Python although in
many other languages you need to use a module or even build your own. We can use dictionariesin
lots of ways and we'll see plenty examples later, but for now, heré's how to create adictionary in
Python, fill it with some entries and read them back:

>>> dct = {}

>>> dct[' boolean'] = "A value which is either true or false"
>>> dct['integer'] = "A whol e nunber”

>>> print(dct[' boolean'])

A value which is either true or false

Notice that we initialize the dictionary with braces, then use square brackets to assign and read the
values.

Just as we did with lists we can initialize a dictionary as we create it using the following format:

>>> addressBook = {

"Fred" : ['"Fred', '9 Sonme St',' Anytown', '0123456789'],
"Rose' : ['Rose', '11 Nother St', 'SonmePlace', '0987654321']
o)

>>>
The key and value are separated by a colon and the pairs are separated by commas.

Y ou can also specify adictionary using a slightly different format (see below), which style you prefer
is mainly a matter of tastel

>>> pook = dict(Fred=['Fred', '9 Some St',' Anytown', '0123456789'],

C Rose=[' Rose', '11 Nother St', 'SonePlace', '0987654321'])
>>> print(book['Fred][3])

0123456789

Notice you don't need quotes around the key in the definition because Python assumesiit is a string
(but you still need them to extract the values). In practice this limits its usefulness so | tend to prefer
thefirst version using braces.

Either way we have made our address book out of a dictionary which is keyed by name and stores our
lists as the values. Rather than work out the numerical index of the entry we want we can just use the
name to retrieve al the information, like this:

>>> print(addressBook[' Rose'])

['Rose', '"11 Nother St', 'SonePlace', '0987654321']
>>> print(addressBook[' Fred'][3])

0123456789

In the second case we indexed the returned list to get only the telephone number. By creating some
variables and assigning the appropriate index val ues we can make this much easier to use:

>>> pane =
>>> street
>>> town =

N I O
=

D:\DOC\HomePage\l 2p\tutdata.htm Page 38

Data 12/04/2010

>>> tel = 3

And now we can use those variables to find out Rose's town:

>>> print(addressBook[' Rose'][town])
SomePl ace

Notice that whereas' Rose' was in quotes because the key is astring, thet own is not becauseit isa
variable name and Python will convert it to the index value we assigned, namely 2. At this point our
Address Book is beginning to resembl e a usabl e database application, thanks largely to the power of
dictionaries. It won't take alot of extrawork to save and restore the data and add a query prompt to
allow us to specify the data we want. We will do that as we progress through the other tutorial topics.

Of course we could use a dictionary to store the data too, then our address book would consist of a
dictionary whose keys were the names and the val ues were dictionaries whose keys were the field
names, likethis:

addr essBook = {

"Fred' : {'nane': "Fred',
"street': '9 Sone St',
"town': " Anyt own' ,
"tel': ' 0123456789' },

"Rose' : {'nane': ' Rose',
"street': "11 Not her St',
"town': ' SonePl ace',
"tel': ' 0987654321' }

}

Noticethat thisis a very readable format although it requires alot more typing. Data stored in a
format where its meaning and content are combined in a human readable format is often referred to as
self-documenting data. Also, when we include a data structure inside another identical structure - a
dictionary inside adictionary in this case - we call that nesting and the inner dictionary would be
called the nested dictionary.

In practice we access this data in a very similar way to the list with named indexes:

>>> print(addressBook[' Rose']['town'])
SomePl ace

Notice the extra quotes around t own. Otherwiseit's exactly the same. One advantage of using this
approach is that we can insert new fields and the existing code will not break whereas with the named
indexes we would need to go back and change all of the index values. If we used the same data in
several programs that could be alot of work. Thus alittle bit of extratyping now could save us alot
of extraeffort in the future.

Dueto their internal structure dictionaries do not support very many of the collection operators that
we've seen so far. None of the concatenation, repetition or appending operations work. (Although
you can of course assign new key/value pairs directly as we saw at the beginning of the section.) To
assist us in accessing the dictionary keys thereis an operation that we can use, keys() , which returns
alist of al the keysin adictionary. For exampleto get alist of al the names in our address book we
could do:

D:\DOC\HomePage\l 2p\tutdata.htm Page 39

Data 12/04/2010

>>> print(addressBook. keys())
['Fred',' Rose']

Note however that dictionaries do not store their keys in the order in which they are inserted so you
may find the keys appear in a strange order, indeed the order may even change over time. Don't worry
about that, you can still use the keys to access your data and the right value will still come out OK.

VBScript Dictionaries

VBScript provides a dictionary object which offers similar facilities to the Python dictionary but the
usageis slightly different. To create a VB Script dictionary we have to declare a variable to hold the
object, then create the object, finally we can add entries to the new dictionary, like this:

Dimdict ' Create a variable.

Set dict = CreateQoject("Scripting.Dictionary")
dict.Add "a", "Athens" ' Add some keys and itens.
di ct.Add "b", "Bel grade"

dict.Add "c", "Cairo"

Notice that the Cr eat eObj ect function specifies that we are creating a

"Scripting. Dictionary" object, thatisaDi cti onary object fromthe VBScript's

Scri pti ng module. Don't worry too much about that for now, we'll discuss it in more depth when
we look at objects later in the tutor. Hopefully you can at least recognize and recall the concept of
using an object from a module from the simple sequences topic earlier. The other point to noticeis
that we must use the keyword Set when assigning an object to a variable in VBScript.

Now we access the data like so:

item=dict.Item("c") ' Cet the item
dict.Item"c") = "Casablanca"” ' Change the item

There are also operations to remove an item, get alist of all the keys, check that a key exists etc.

Hereis a complete but simplified version of our address book example in VBScript:

<script type="text/VBScript">

Di m addr essBook

Set addressBook = CreateCbject("Scripting.Dictionary")

addr essBook. Add "Fred", "Fred, 9 Sone St, Anytown, 0123456789"
addr essBook. Add "Rose", "Rose, 11 Nother St, SonePl ace, 0987654321"

MsgBox addressBook. I ten(" Rose")
</script>

Thistime, instead of using alist, we have stored all the data as a single string. (This of course makes it
much harder to extract individual fields as we did with thelist or dictionary.) We then access and print
Rose's details in a message box.

JavaScript Dictionaries

D:\DOC\HomePage\l 2p\tutdata.htm Page 40

Data 12/04/2010

JavaScript doesn't really have a dictionary object of its own, although if you are using Internet
Explorer you can get access to the VBScript Scri pti ng. Di cti onary object discussed above, with
all of the samefacilities. But sinceit's really the same object | won't cover it further here. Finally
JavaScript arrays can be used very much like dictionaries but welll discuss that in the array section
below.

If you're getting a bit fed up, you can jump to the next chapter at this point. Remember to

come back and finish this one when you start to come across types of data we haven't
mentioned so far.

Other Collection Types
Array or Vector

The array is one of the earlier collection typesin computing history. It is basically alist of items which
are indexed for easy and fast retrieval. Usually you have to say up front how many items you want to
store and usually you can only store data of a single type. These fixed size and fixed type features are
what distinguishes arrays from the list data type discussed above. (Notice | said "usually" above.
That's because different languages have widdly different ideas of what exactly constitutes an array that
it is hard to make definiterules.)

Python supports arrays through a module but it is rarely needed because the built in list type can
usually be used instead. VBScript and JavaScript both have arrays as a data type, so let's briefly [ook
at how they are used:

VBScript Arrays

In VBScript an array is afixed length collection of data accessed by a numerical index. It is declared
and accessed like this:

Di m AnArray(42) ' A 43! element array
AnArray(0) = 27 ' index starts at O
AnArray(1) = 49

nyVariable = AnArray(1) ' read the val ue

Note the use of the Di mkeyword. This dimensions the variable. Thisis away of teling VBScript
about the variable, if you start your script with OPTI ON EXPLI CI T VBScript will expect you to
Di many variables you use, which many programming experts believe is good practice and leads to
more reliable programs. Also notice that we specify the last valid index, 42 in our example, which
means the array actually has 43 e ements because it starts at 0.

Notice also that in VB Script we use parentheses to dimension and index the array, not the square
brackets used in Python and, as well soon see, JavaScript. Finally, recall that | said arrays usually only
store one type of data? Well in VBScript thereis only one official type of data: the Var i ant , whichin
turn can store any kind of VBScript value. So a VBScript array only stores Variants, which, in
practice, means they can store anything! Confusing? It isif you think about it too much, so don't, just
use them!

As with Python lists, we can declare multiple dimensional arrays to model tables of data, for our
address book example:

Dm MyTable(2,3) ' 3 rows, 4 colums
MyTabl e(0,0) = "Fred" ' Populate Fred' s entry
MyTabl e(0,1) = "9 Sone Street”

D:\DOC\HomePage\l 2p\tutdata.htm Page 41

Data 12/04/2010

MyTabl e(0, 2) = "Anyt own"

MyTabl e(0,3) = "0123456789"

MyTabl e(1,0) = "Rose" ' And now Rose. ..
...and so on...

Unfortunately there is no way to populate the data all in one go as we did with Python's lists, we have
to populate each field one by one. If we combine VB Script's dictionary and array capability we get
almost the same usability as we did with Python. 1t looks like this:

<script type="text/VBScript">
Di m addr essBook
Set addressBook = CreateCbject("Scripting.Dictionary")

D m Fred(3)

Fred(0) = "Fred"
Fred(1) = "9 Sone St"
Fred(2) = "Anytown"
Fred(3) = "0123456789"

addr essBook. Add " Fred", Fred

MsgBox addressBook.ltem("Fred")(3) ' Print the Phone Nunber
</script>

Thefinal aspect of VBScript arrays that | want to consider is the fact that they don't need to be fixed
insizeat all! However this does not mean we can just arbitrarily keep adding e ements as we did with
our lists, rather we can explicitly resize an array. For this to happen we need to declare a Dynamic
array which we do, quite simply by omitting the size, like this:

Dim DynArray() ' no size specified

Toresizeit we use the ReDi mcommand, like so:

<script type="text/vbscript">
Di m DynArray()
ReDi m DynArray(5) ' Initial size =5
DynArray(0) = 42
DynArray(4) = 26
MsgBox "Before: " & DynArray(4) ' prove that it worked
Resize to 21 el enents keeping the data we al ready stored
ReDi m Preserve DynArray(20)
DynArray(15) = 73
MsgBox "After Preserve: " & DynArray(4) & " " & DynArray(15)' dd and new still t
' Resize to 51 itens but lose all data
Redi m DynArray(50)
MsgBox "Wthout Preserve: " & DynArray(4) & " Oops, Were did it go?"
</script>

As you can seethisis not so convenient as alist which adjusts its length automatically, but it does
give the programmer more control over how the program behaves. This level of control can, amongst
other things improve security since some viruses can exploit dynamically re-sizable data stores.

JavaScript Arrays

Arrays in JavaScript are in many ways a misnomer. They are called arrays but are actually a curious
mix of the features of lists, dictionaries and traditional arrays. At the simplest level we can declare a
new Array of 10 items of some type, like so:

D:\DOC\HomePage\l 2p\tutdata.htm Page 42

Data 12/04/2010

var items = new Array(10);

Notice the use of the keyword new to create the Array. Thisis similar in effect to the
Cr eat eObj ect () function we used in VBScript to create a dictionary. Also notice that we use
parentheses to define the size of the array.

We can now popul ate and access the e ements of the array like this:

i tens[4]
itens[7]
var aVal ue

S0 once again we use square brackets to access the array e ements. And once again the indexes start
from zero.

However JavaScript arrays are not limited to storing a single type of value, we can assign anything to
an array € ement:

items[9] = "A short string”;
var nsg = itens[9];

Also we can creste arrays by providing alist of items, like so:

var noreltens = new Array("one","two","three", 4,5, 6);
aVal ue = noreltens| 3];
nsg = noreltens[0];

Another feature of JavaScript arrays is that we can determine the length through a hidden property
caled | engt h. We access the length like this:

var size = itens.|ength;

Notice that once again the syntax for this uses an nane. pr operty format and is very like calling a
function in a Python module but without the parentheses.

As mentioned, JavaScript arrays start indexing at zero by default. However, JavaScript array indexes
are not limited to numbers, we can use strings too, and in this case they become almost identical to
dictionaries! We can aso extend an array by simply assigning a value to an index beyond the current
maximum - which means we don't really need to specify a size when we create one, even though it is
considered good practice! We can see these features in use in the following code segment:

<script type="text/javascript">

var items = new Array(10);

var noreltenms = new Array(1);

itenms[42] = 7,

noreltens["foo"] = 42;

nmsg = noreltens["fo0"];

docunent.wite("nsg =" + nsg + " and itens[42] =" + itens[42]),;
</script>

Finally, let's look at our address book example once more, this time using JavaScript arrays:

D:\DOC\HomePage\l 2p\tutdata.htm Page 43

Data 12/04/2010

<script type="text/javascript">

var addressBook = new Array();

addr essBook["Fred"] = new Array("Fred", "9 Sone St", "Anytown", "0123456789");
addr essBook["Rose"] = new Array("Rose", "11 Nother St", "SonePl ace", "0987654321"

document . wri t e(addr essBook. Rose) ;
</script>

Notice that we can also access the key as if it were a property likel engt h. JavaScript arrays really
are quite remarkably flexible data structures!

Stack

Think of a stack of trays in arestaurant. A member of staff puts a pile of clean trays on top and these
are removed one by one by customers. The trays at the bottom of the stack get used last (and least!).
Data stacks work the same way: you push an item onto the stack or pop one off. The item popped is
always the last one pushed. This property of stacks is sometimes called Last In First Out or LIFO.
One useful property of stacksis that you can reverse alist of items by pushing the list onto the stack
then popping it off again. The result will be the reverse of the starting list. Stacks are not built in to
Python, VBScript or JavaScript. Y ou have to write some program code to implement the behavior.
Lists are usualy the best starting point since like stacks they can grow as needed.

Try writing a stack using a Python list. Remember that you can append() to the end of alist and
del () itemsat agivenindex. Also you can use- 1 toindex thelast itemin alist. Armed with that
information you should be able to write a program that pushes 4 characters onto alist and then pops
them off again, printing them as you go. Just watch which order you call print and del! If you get it
right then they should print in the reverse order to how you pushed them on.

Bag

A bag is a collection of items with no specified order and it can contain duplicates. Bags usually have
operators to enable you to add, find and remove items. In our languages bags arejust lists.

Set

A set has the property of only storing one of each item. You can usually test to seeif anitemisina
set (membership), add or remove items and join two sets together in various ways corresponding to
set theory in math (e.g. union, intersect etc). Sets do not have any concept of order. VBScript and
JavaScript do not implement sets directly but you can approximate the behavior fairly easily using
dictionaries.

In Python sets are supported as a native data type.

The basic usageislikethis:

>>> A = set() # create an enpty set

>>> B = set([1,2,3]) # a set froma |ist

>>> C = {3,4,5} # initialisation, like [] inlists
>>> D = {6,7, 8}

>>> # Now try out sone set operations

>>> print(B.union(C)
{1, 2, 3, 4, 5}
>>> print(B.intersection(C)

{3}

D:\DOC\HomePage\l 2p\tutdata.htm Page 44

Data 12/04/2010

>>> print(B.issuperset({2}))

True

>>> print({3}.issubset(C)

True

>>> print(Cintersection(D == A)
True

There are short hand versions of union and intersection too:

>>> print

(same as B.intersection(CQ)
>>> print(

B &
B | same as B. union(Q

C) #
C) #
And finally you can test whether an itemisin aset using the 'in' operator:

>>> print(2 in B)
True

There are a number of other set operations but these should be enough for now.
Queue

A queueis rather like a stack except that thefirst iteminto aqueueis also thefirst itemout. Thisis
known as First In First Out or FIFO behavior. Thisis usually implemented using alist or array.

Seeif you can write a stack using alist. Remember you can add to alist with append() and delete
from a given position using del () . Try to add 4 characters to your stack and then get them out and
print them. They should print in the same order that you inserted them.

There's awhole bunch of other collection types but the ones we have covered are the main ones that
you are likely to come across. (And in fact we'll only be using a few of the ones we've discussed in
this tutor, but you will see the others mentioned in articles and in programming discussion groups!)

Files

As a computer user you should be very familiar with files - they form very basis of nearly everything
we do with computers. It should be no surprise then, to discover that most programming languages
provide a specid file type of data. However files and the processing of them are so important that |
will put off discussing them till later when they get a whole topic to themsel ves.

Datesand Times

Dates and times are often given dedicated types in programming. At other times they are simply
represented as a large number (typically the number of seconds from some arbitrary date/time, such as
when the operating system was written!). In other cases the data type is what is known as a complex
type as described in the next section. This usually makes it easier to extract the month, day, hour etc.
Wewill take a brief look at using the Python t i me modulein alater topic. Both VBScript and
JavaScript have their own mechanisms for handling time but | won't be discussing them further.

Complex/User Defined
Sometimes the basic types described above are inadequate even when combined in collections.

Sometimes, what we want to do is group several bits of data together then treat it asasingleitem. An
example might be the description of an address:

D:\DOC\HomePage\l 2p\tutdata.htm Page 45

Data 12/04/2010
a house number, a street and atown. Finally there's the post code or zip code.

Most languages allow us to group such information together in arecord or structure or with the more
modern, object oriented version, aclass.

VBScript

In VBScript such arecord definition looks like:

Cl ass Address
Publ i ¢ HsNunber
Public Street
Publ i c Town
Publ i c Zi pCode
End C ass

The Publ i ¢ keyword simply means that the data is accessible to the rest of the program, it's possible
to have Pri vat e datatoo, but well discuss that |ater in the course.

Python

In Python it's only alittle different:

>>> cl ass Address:
def __init__(self, Hs, St, Town, Zip):
sel f. HsNumber = Hs
self.Street = St
sel f. Town = Town
sel f. Zi pCode = Zip

That may look alittle arcane but don't worry I'll explain what thedef __init_ (...) and

sel f bits mean in the section on object orientation. One thing to noteis that there are

two underscores at each end on__i nit __. Thisis aPython convention that we will discuss |ater.
Also you need to use the spacing shown above, as well explain later Python is a bit picky about
spacing. For now just make sure you copy the layout above.

Some peopl e have had problems trying to type this example at the Python prompt. At the end of this
chapter you will find a box with more explanation, but you can just wait till we get the full story later
in the course if you prefer. If you do try typing it into Python then please make sure you copy the
indentation shown. As you'll seelater Python is very particular about indentation levels.

The main thing | want you to recognizein all of thisisthat, just as wedid in VBScript, we have
gathered several pieces of related datainto a single structure called Addr ess.

JavaScript

JavaScript provides a slightly strange name for its structure format, namely f unct i on! Now
functions are normally associated with operations not collections of data however in JavaScript's case
it can cover either. To create our address object in JavaScript we do this:

function Address(Hs, St, Town, Zi p)

this. HSNum = Hs;

D:\DOC\HomePage\l 2p\tutdata.htm Pege 46

Data 12/04/2010

this.Street = St;

this. Town = Town;

t hi s. Zi pCode = Zip;
}

Once again, ignore the syntax and use of the keyword t hi s, the end result is a group of data items
that we call Address and can treat as a single unit.

OK, So we can create these data structures but what can we do with them once created? How do we
access the data items inside? That's our next mission.

Accessing Complex Types

We can assign a complex data type to a variable too, but to access theindividual fields of the type we
must use some specia access mechanism (which will be defined by the language). Usually thisis a dot.

Using VBScript

To consider the case of the address class we defined above we would do thisin VBScript:

Di m Addr
Set Addr = New Address

Addr . HsNunber = 7

Addr. Street = "High St"
Addr. Town = " Anyt own"
Addr . Zi pCode = "123 456"

MsgBox Addr.HsNumber & " " & Addr. Street & " " & Addr. Town

Herewefirst of al Dimension anew variable, Addr , using Di mthen we use the Set keyword to
create a new instance of the Addr ess class. Next we assign values to the fields of the new address
instance and finally we print out the address in a Message Box.

And in Python

And in Python, assuming you have already typed in the class definition above:

>>> Addr = Address(7,"High St","Anytown","123 456")
>>> print(Addr.HsNunber, Addr.Street, Addr.Town)
7 H gh St Anytown

Which creates an instance of our Addr ess type and assigns it to the variable Addr . In Python we can
pass the field val ues to the new object when we create it. We then print out the HsNunber and

St reet fields of the newly created instance using the dot operator. Y ou could, of course, create
several new Address instances each with their own individual values of house number, street etc. Why
not experiment with this yourself? Can you think of how this could be used in our address book
example from earlier in the topic?

JavaScript too

The JavaScript mechanismis very similar to the others but has a couple of twists, aswell seeina
moment. However the basic mechanism is straightforward and the one | recommend you use:

D:\DOC\HomePage\l 2p\tutdata.htm Page 47

Data 12/04/2010

var addr = new Address(7, "High St", "Anytown", "123 456");
document .wite(addr. HsSNum + " " + addr. Street + " " + addr. Town);

One final mechanism that we can usein JavaScript is to treat the object like a dictionary and use the
field name as a key:

docurment .wite(addr['HsNum] + " " + addr[' Street'] + " " + addr[' Town']);

| can't really think of any good reason to use this form other than if you were to be given thefield
name as a string, perhaps after reading afile or input from the user of your program (we'll see how to
do that later too).

User Defined Operators

User defined types can, in some languages, have operations defined too. Thisis the basis of what is
known as object oriented programming. We dedicate a whole section to this topic later but essentially
an object is a collection of data € ements and the operations associated with that data, wrapped up as
asingle unit. Python uses objects extensively in its standard library of modules and also allows us as
programmers to create our own object types.

Object operations are accessed in the same way as data members of a user defined type, viathe dot
operator, but otherwise ook like functions. These special functions are called methods. We have
already seen thiswith the append() operation of alist. Recall that to useit we must tag the function
call onto the variable name:

>>> | jstObject =[] # an enpty |i st

>>> | j st Obj ect. append(42) # a nethod call of the |ist object
>>> print(|istCbject)

[42]

When an object type, known as aclass, is provided in a Python module we must import the module
(aswedid with sys earlier), then prefix the object type with the module name when creating an
instance that we can store in avariable (while still using the parentheses, of course). We can then use
the variable without using the module name.

We will illustrate this by considering a fictitious module meat which provides a Spam class. We
import the module, create an instance of Spam, assigning it the name ny Spamand then use ny Spamto
access its operations and data like so:

>>> jnport neat

>>> mySpam = neat. Spam() # create an instance, use nodul e nane
>>> mmySpam slice() # use a Spam operation

>>> print(nmySpamingredients) # access Spam data
{"Pork":"40% , "Ham':"45%, "Fat":"15% }

In thefirst line we import the (non-existent!) module neat into the program. In the second line we
use the meat modul e to create an instance of the Spam class - by calling it asif it were afunction! In
the third line we access one of the Spam class's operations, sl i ce(), treating the object (nmySpam) as
if it were a module and the operation were in the module. Finally we access some data from within the
my Spamobject using the same module like syntax. We will belooking at real examples of this (i.e.
ones that work!) later in the course.

D:\DOC\HomePage\l 2p\tutdata.htm Pege 48

Data 12/04/2010

Other than the need to create an instance, there’ s no real difference between using objects provided
within modules and functions found within modules. Think of the object name simply as a labd which
keeps related functions and variables grouped together.

Another way to look at it is that objects represent real world things, to which we as programmers can
do things. That view is where the original idea of objects in programs came from: writing computer
simulations of real world situations.

Both VB Script and JavaScript work with objects and in fact that's exactly what we have been using in
each of the Address examples above. We have defined a class and then created an instance which we
assigned to a variable so that we could access the instance's properties. Go back and review the
previous sections in terms of what we've just said about classes and objects. Think about how classes
provide a mechanism for creating new types of data in our programs by binding together the data and
operations of the new type.

Python Specific Operators

In this tutor my primary objectiveis to teach you to program and, although | use Python in the tutor,
thereis no reason why, having read this, you couldn’t go out and read about another language and use
that instead. Indeed that’s exactly what | expect you to do since no single programming language,
even Python, can do everything. However, because of that objective, | do not teach all of the features
of Python but focus on those which can generally be found in other languages too. As aresult there
are several Python specific features which, while they are quite powerful, | don’t describe at all, and
that includes special operators. Maost programming languages have operations which they support and
other languages do not. It is often these 'unique’ operators that bring new programming languages into
being, and certainly are important factors in determining how popular the language becomes.

For example Python supports such relatively uncommon operations as list slicing (spani X: Y]) for
extracting a section (or slice) out from the middle of alist(or string, or tuple) and tuple assignment (
X, Y = 12, 34) whichalows usto assign multiple variable values at onetime.

It also has the facility to perform an operation on every member of a collection using its

map() function which we describe in the Functional Programming topic. There are many more and
it's often said that "Python comes with the batteries included”. For details of how most of these
Python specific operations work you' |l need to consult the Python documentation.

Findly, it's worth pointing out that although | say they are Python specific, that is not to say that they
can’'t be found in any other languages but rather that they will not all be found in every language. The
operators that we cover in the main text are generally available in some formin virtually all modern
programming languages.

That concludes our look at the raw materials of programming, let’s move onto the more exciting topic
of technique and see how we can put these materials to work.

Mor e information on the Address example

Although, as | said earlier, the details of this example are explained later, some readers have found
difficulty getting the Python example to work. This note gives aline by line explanation of the
Python code. The compl ete code for the example looks like this:

>>> c| ass Addr ess:

D:\DOC\HomePage\l 2p\tutdata.htm Page 49

Data 12/04/2010

def __init__ (self, Hs, St, Town, Zip):
sel f. HsNunmber = Hs
self.Street = St
sel f. Town = Town
sel f. Zip_Code = Zip

>>> Addr = Address(7,"Hi gh St","Anytown","123 456")
>>> print(Addr.HsNunber, Addr.Street)

Hereis the explanation:

>>> c| ass Address:

Thecl ass statement tells Python that we are about to define a new type called, in this case,
Addr ess. The colon indicates that any indented lines following will be part of the class definition.
The definition will end at the next unindented line. If you are using IDLE you should find that the
editor has indented the next line for you, if working at a command line Python prompt inan MS
DOS window then you will need to manually indent the lines as shown. Python doesn't care how
much you indent by, just so long asit is consistent.

def _ init_ (self, Hs, St, Town, Zip):

Thefirst item within our class is what is known as a method definition. One very important detail is
that the name has a double underscore at each end, this is a Python convention for names that it
treats as having special significance. This particular method iscalled __i nit __ and isaspecia
operation, performed by Python, when we create an instance of our new class, we'll see that shortly.
The colon, as before, simply tells Python that the next set of indented lines will be the actual
definition of the method.

sel f. HsNunber = Hs

This line plus the next three, al assign values to the internal fields of our object. They are indented
fromthe def statement to tell Python that they constitute the actual definition of the

__init__ operation.The blank linetdls the Python interpreter that the class definition is finished so
that we get the >>> prompt back.

>>> Addr = Address(7,"High St","Anytown","123 456")

This creates a new instance of our Address type and Python usesthe __i ni t __ operation defined
above to assign the values we provide to the internal fields. The instanceis assigned to the
Addr variablejust like an instance of any other data type would be.

>>> print(Addr.HsNunber, Addr.Street)

Now we print out the values of two of theinternal fields using the dot operator to access them.

D:\DOC\HomePage\l 2p\tutdata.htm Page 50

Data 12/04/2010

As | said we cover al of thisin more detail |ater in the tutorial. The key point to take away is that
Python allows us to create our own data types and use them pretty much like the built in ones.

| Points to remember

* Variables refer to data and may need to be declared before being defined.

* Data comesin many types and the operations you can successfully perform will depend on
the type of data you are using.

* Simple data types include character strings, numbers, Boolean or ‘truth’ values.

* Complex data types include collections, files, dates and user defined data types.

* There are many operators in every programming language and part of learning a new
language is becoming familiar with both its data types and the operators available for those
types.

* The same operator (e.g. addition) may be available for different types, but the results may
not be identical, or even apparently related!

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutdata.htm Page 51

More Sequences 12/04/2010

More Sequences and Other Things

| What will we cover?

® Weintroduce a new tool for entering Python programs.

®* Wereview the use of variables to store information until we need it.
® We discuss comments and why they are needed

®* We combine longer sequences of commands to perform atask.

OK, Now we know how to type simple, single entry, commands into Python and have started to
consider data and what we can do with it. In doing so we typed in afew longer sequences of 5-10
lines. We are getting close to being able to write really quite useful programs but with one big snag:
every time we exit Python we lose our programs. If you have been doing the VBScript or JavaScript
examples you will seethat you have stored those examples in files and so can run them repeatedly, we
need to do the same with Python. | already mentioned that we can do this using any text editor, like
notepad or pico, say, and saving thefilewith a.py file extension. Y ou can then run the file from the
operating system command prompt by prefixing the script name with pyt hon. Hereis an example
that uses a sequence of python commands; all things we've seen already:

File: firstprogram py

print("hello world")

print("Here are the ten nunbers fromO to 9Y\n0 1 2 3456 7 8 9")
print("I'mdone!")

end of file

Note that the lines at top and bottom are not really needed, they are called comments and we will
discuss them later in this topic. | added them to show more clearly what goes into thefile. You can
use Notepad or any other text editor to create thefile so long as it savesin plain text.

Now to run this program start up an operating system command prompt. (If you aren't sure about
how to do that then see the box in the Getting Started topic.) Change into the directory where you
saved your python file and execute it by prefixing its name with python, like this:

D: \ PRQJECTS\ Pyt hon> pyt hon firstprogram py
hello world

Here are the ten nunbers fromO to 9
01234567829

I m done!

D: \ PRQJECTS\ Pyt hon>

Y ou can see the Windows command prompt and the command | typed (in bold), plus the output of
the program displayed before the command prompt reappears.

However, thereis an easier way...
Thejoy of being IDLE

When you installed Python you also installed a useful application, itself written in Python, called
IDLE. IDLE iswhat is known as an Integrated Development Environment, that isto say it includes
several tools that help the programmer, all wrapped up in asingle application. | won't be looking at
IDLE in depth here, but the two features that | want to highlight are the fact that it provides an
enhanced version of the Python >>> prompt, complete with syntax highlighting (That is, displaying

D:\DOC\HomePage\l 2p\tutseg2.htm Page 52

More Sequences 12/04/2010

different features of the language in different colours) and other nice features, plus a nice, Python
specific, text editor which allows you to run your program files (such as the one we created above)
directly fromwithin IDLE.

| strongly recommend that, if you haven't already done so, you give IDLE atry. The best placeto
start, once you find the right way to start IDLE on your Operating System, isto visit Danny Yo0's
excellent tutorial.

Thereis also afull tutorial on using IDLE on the Python web site under the IDLE topic.

Finally, if you prefer a simple approach, you can find severa text editors that support programming in
Python in various ways. The vim editor provides syntax highlighting (colouring of key words etc),
emacs has afull editing mode for Python and Sciteis a very lightweight editor that provides Python
syntax highlighting and other nice features.

If you go down the text editor route you will likely find it most convenient to have three windows
open on your screen at once:

1. The editor where you type in and save your source code

2. A Python session where you try things out at the >>> prompt before adding them to your
programin the editor and

3. An operating system command prompt used to run the program to test it.

| personally prefer the 3 window approach, but most beginners seem to prefer the all-in-one style of
an IDE like IDLE. The choiceis entirely up to you.

If you are using JavaScript or VBScript | recommend using one of the editors mentioned above and a
suitable web browser, say Internet Explorer, opened at the file you are working on. To test changes
just hit the Reload button in the browser.

A quick comment

One of the most important of programming tools is one that beginners often fedl is useless on first
acquai ntance - comments. Comments are just lines in the program which describe what's going on.
They have no effect whatsoever on how the program operates, they are purely decorative. They do,
however, have an important role to play - they tell the programmer what's going on and more
importantly why. Thisis especially important if the programmer reading the code isn't the one who
wroteit, or, it's along time since he/she wrote it. Once you've been programming for awhile you'll
really appreciate good comments. | have actually been adding comments to some of the code
fragments that you've seen already, they were the green bits of the lines with a# (Python) or

" (VBScript) symbol in front of them. From now on I'll be commenting the code fragments that |
write. Gradually the amount of explanatory text will diminish as the explanation appears in comments
instead.

Every language has a way of indicating comments. In VBScript it's REM(for Remark) or, more

commonly, asinglequote' at the beginning of a comment. Everything after the marker is ignored:

REM Thi s never gets displayed
nei ther does this
nmsgBox "This gets displ ayed”

Y ou might recognize REM if you have ever written any MSDOS batch files, since they use the same
comment marker.

D:\DOC\HomePage\l 2p\tutseg2.htm Page 53

More Sequences 12/04/2010

Note that the use of a single quote as a comment marker is the reason you can't start a string with a
single quote in VBScript - VBScript thinks it's a comment!

Pythonusesa # symbol asits comment marker. Anything followinga # isignored:

\Y
X

12 # give v the value 12
V*v # x is v squared

Incidentally thisis very bad commenting style. Y our comment should not merely state what the code
does - we can see that for ourselves! It should explain why it's doing it:

3600 # 3600 is numof secs in an hour
t*3600 # t holds elapsed tinme in hours, so convert to secs

\Y
S

These are much more hel pful comments.

Finally JavaScript uses adouble slash: / / as a comment marker. Once again, everything after the
marker gets ignored.

Some languages allow multi-line comments between a pair of markers, but this can lead to some
obscure faults if the terminating marker is not correctly input. JavaScript allows multi-line comments
by using the pair of markers: / * followed by */ , likethis:

<script type="text/javascript">
docunent.wite("This gets printed\in");

/1 A single |ine conmrent

/* Here is a multi line comment. It continues fromthis line
down into this line and even

onto this third Iine. It does not appear in the script output.
It is terminated by a mirror inmage of the opening marker */

document .wite("And this prints too");
</script>

The important point about comments is that they are there to explain the code to anyone who tries to
read it. With that in mind you should explain any mysterious sections - such as apparently arbitrary
values used, or complex arithmetic formul ae etc. And remember, the puzzled reader might be yourself
in afew weeks or months time!

Seguences using variables

We introduced the concept of variables in the Raw Materials topic topic. There we said they were
|abels with which we marked our data for future reference. We saw some exampl es of using variables
too in the various list and address book examples. However variables are so fundamentally important
in programming that | want to do a quick recap of how we use variables before moving onto new
things.

Now, at a Python Prompt(>>>), either in IDLE's Shell or in a DOS or Unix command window, try
typing this:

>> vy = 7

D:\DOC\HomePage\l 2p\tutseg2.htm Page 54

More Sequences 12/04/2010

>>> w = 18
>>> X =V o+ W # use our variables in a calcul ation
>>> print(X)

What's happening here is that we are creating variables (v, w, x) and manipulating them. It's
rather like using the Mbutton on your pocket calculator to store aresult for later use.

We can make this prettier by using aformat string to print the result:

>>> print("The sumof %l and % is: %" % (v,wX))

One advantage of format strings is that we can store them in variabl es too:

>>> s = "The sumof %l and % is: %"
>>> print(s %(v,wXx)) # useful if printing sane output with different val ues

This makes the print statement much shorter, especially when it contains many values. However it
also makes it more cryptic so you have to use your judgment to decide whether very long lines are
more or |ess readable than a stored format value. If you keep the format string beside the print
statement, as we did here, then it's not too bad. Finally one other thing that helps is to name your
variables in such away that they explain what they are used for. For example instead of calling the
format string s | could have called it sunfor mat , so that the code looked like this:

>>> sunfFormat = "The sumof %l and % is: %"
>>> print(sunfFormat % (v,w, X)) # useful if printing sane output with differen

Now, in a program with several different format strings in use, we could more easily tell which format
is being printed. Meaningful variable names are aways a good idea and I'll try to use meaningful
names where possible. Up until now our variables haven't had much meaning to convey!

Order matters

By now you might be thinking that this sequence construct is a bit over-rated and obvious. Y ou
would beright in so far asit's fairly obvious, but it's not quite as simple as it might seem. There can be
hidden traps. Consider the case where you want to ‘promote’ al the headings in an HTML document
up aleve:

Now in HTML the headings are indicated by surrounding the text with
<H1>text</ H1> for level 1 headings,

<H2>text</ H2> for level 2 headings,

<H3>text</ H3> for level 3 headings and so on.

The problemis that by the time you get to level 5 headings the heading text is often smaller than the
body text, which looks odd. Thus you might decide to promote all headings up oneleve. It's fairly
easy to do that with a simple string substitution in atext editor, substitute '<H2' with '<H1' and '</H2'
with '</H1" and so on.

Consider though what happens if you start with the highest numbers - say H4 -> H3, then do H3 ->
H2 and finally H2 -> H1. All of the headings will have moved to H1! Thus the order of the sequence
of actionsisimportant. The sameis just as true if we wrote a program to do the substitution (which
we might well want to do, since promoting headings may be atask we do regularly).

D:\DOC\HomePage\l 2p\tutseg2.htm Page 55

More Sequences 12/04/2010

We've seen several other examples using variables and sequences in the Raw Materials topic -
particularly the various address book examples. Why not think up a few examples for yourself? Once
you've done that we'll move on to a case study that we will build upon as we move through the
tutorial, improving it with each new technique we learn.

A Multiplication Table

I'm now going to introduce a programming exercise that we will develop over the next few chapters.
The solutions will gradually improve as we learn new techniques.

Recall that we can type long strings by enclosing them in triple quotes? Let's use that to construct a
multiplication table:

>>> g = """

1x 12 = %

2 x 12 = %

3 x 12 = %

4 x 12 = %l

be careful - you can't put comrents inside
>>> # strings, they'Il become part of the string!
>>> print(s % (12, 2*12, 3*12, 4*12))

By extending that we could print out the full 12 times table from 1 to 12. But is there a better way?
The answer isyes, let'sseewhat it is.

Pointsto remember

* IDLE isacross platform development tool for writing Python programs.

* Comments can make programs clearer to read but have no effect on the operation of the
program

* Variables can storeintermediate results for later use

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutseg2.htm Page 56

Looping theloop 12/04/2010

L ooping - Or theart of repeating onesalf!

| What will we cover?

® How to use loops to cut down on repetitive typing.
* Different types of loop and when to use them.

In the last exercise we printed out part of the 12 times table. But it took alot of typing and if we
needed to extend it, it would be very time consuming. Fortunately thereis a better way and it's where
we start to see the real power that programming languages offer us.

FOR Loops

What we are going to do is get the programming language to do the repetition, substituting a variable
which increases in value each time it repeats. In Python it looks like this:

>>>for n in range(1, 13):
print("% x 12 = %" % (n, n*12))

1 x 12 = 12
2 x 12 = 24
3 x 12 = 36
4 x 12 = 48
5 x 12 = 60
6 x 12 = 72
7 x 12 = 84
8 x 12 = 96
9 x 12 = 108
10 x 12 = 120
11 x 12 = 132
12 x 12 = 144

Note 1: Thefor line ends with acolon (:). Thisisimportant sinceit signifies to Python that what
follows is the thing to be repeated.

Note 2: Weneed ther ange(1, 13) to specify 13 becauser ange() function generates from the first
number up to, but not including, the second number. This may seem somewhat bizarre at first but
there are reasons and you get used to it.

Note 3: Thef or operator in Python is actually a foreach operator in that it applies the subsequent
code sequence to each member of a collection. In this case the collection is the list of numbers
generated by r ange() . You can provethat by typingprint (i st(range(1, 13)) atthe
python prompt and seeing what gets printed. Alternatively we could just replacer ange() with an
explicit list of numbers like this:

>>> for nin[1,2,3,4,5,6,7,8,9,10,11, 12]:
print("% x 12 = %" % (n, n*12))

Note4: Thepri nt lineisindented or spaced further in than thef or lineaboveit. That isavery
important point since it's how Python knows that the pri nt isthe bit to repeat. There can be more
than a single line indented too, Python will repest all of the lines that are indented for each itemin the
collection. Also, it doesn't matter how much indentation you use so long as it's consistent.

D:\DOC\HomePage\l 2p\tutl oops.htm Page 57

Looping theloop 12/04/2010

Note 5: In the interactive interpreter you need to hit return twice to get the programto run. The
reason is that the Python interpreter can't tell whether the first oneis another line about to be added to
the loop code or not. When you hit Enter a second time Python assumes your finished entering code
and runs the program.

Phew! That was alot of notes! However now we have considered the syntax of afor loop let's
consider how it works. Let's step through it step by step.

First of al, python uses the range() function to create alist of numbers from 1 to 12.
Next python makes n equal to thefirst valuein thelist, in this case 1. It then executes the bit of code
that isindented, using thevaluen = 1:

print("% x 12 = %" % (1, 1*12))
Python then goes back to thef or lineand sets n to the next valuein thelist, thistime 2. It again
executes the indented code, thistimewith n = 2:

print("% x 12 = %" % (2, 2*12))

It keeps repesating this sequence until it has set n to al the valuesin thelist. At that point it moves to
the next command that is not indented - in this case there aren't any more commands so the program
stops.

Here'sthe sameloop in VBScript:

The simplest VBScript loop construct is called aFor . . . Next loop, and is used as shown:

<script type="text/vbscript">
For N =1 To 12

MsgBox N & " x 12 =" & N-12
Next
</script>

Thisis much more explicit and easier to see what is happening. The value of N varies from 1 through
to 12 and the code before the Next keyword is executed. In this caseit just prints theresult in a
dialog box as we've seen before. The indentation is optional but makes the code easier to read.

Although the VB Script appears, at first glance, more obvious, the Python version is ultimately more
flexible as well see shortly.

And in JavaScript
JavaScript uses af or construct that is common in many programming languages, being modeled on

C. It looks like this:

<script type="text/javascript">
for (n=1;, n <= 12; n++){
document .wite(n + " x 12 =" + n*12 + "
");
b
</ Script>
Note: This construct initially looks quite complicated. It has 3 parts inside the parentheses:

D:\DOC\HomePage\l 2p\tutl oops.htm Page 58

Looping theloop 12/04/2010

* aninitializng part: n = 1 executed just once, before anything else,

* atestpart: n <= 12 whichis executed before each iteration and

® anincrement part: n++ which is shorthand for "increment n by 1", and is executed after each
iteration.

Notice al so that JavaScript encloses the repeated code (the loop body) in braces {} and although that
isall that is needed, technically speaking, it is considered good practice to indent the code inside the
braces too, just to improve readability.

The loop body will only executeif the test part is true. Each of these parts can contain arbitrary code
but the test part must evaluate to a boolean value.

Mor e about the Python for construct

The Python f or loop iterates over a sequence. A Sequence in Python, lest you forgot, includes things
like strings, lists and tuples. (In fact Python can iterate over several other kinds of things too but we
will discuss them much later in the tutorial.) Thus we can writef or |oops that act on any type of
sequence. Let's try printing the |etters of aword one by one using af or loop with a string:

>>> for ¢ in 'word : print(c)

o-~os;

Notice how the |etters were printed, one per line. Notice too that where the body of the loop consists
of asingleline we can add it on the same line after the colon(:). The colon is what tells Python that
there's ablock of code coming up next.

We can also iterate over atuple:

>>> for word in ('one',"wrd , "after', 'another'): print (word)

This time we got each word on aline. We can put them all on one line using a specia feature of the
print () function. We can add an extra argument after the printable item, like this:

>>> for word in ('one', 'word', 'after', "another'): print(word, end=")

See how the words now appear as asingleline? Theend='" part told Python to use an empty string
(' asthelineending instead of the newline character that it uses by default.

We have already seen f or with alist but for completeness we will do it once more:

>>> for itemin ['one', 2, "three']: print(item)

There is one caveat when using foreach style loops like this. The loop gives you a copy of what wasin
the collection, you can't modify the contents of the collection directly. So if you need to modify the
collection you have to use an awkward kludge involving the index of the collection, like this:

D:\DOC\HomePage\l 2p\tutl oops.htm Page 59

Looping theloop 12/04/2010

myList =11, 2,3, 4]

for index in range(len(nyList)):
nyList[index] +=1

print(myList)

That will increment each entry in nyLi st . If we had not used the index trick we would simply have
incremented the copied items but not changed the original list.

Note that in this example | have not used the interactive Python prompt (>>>), so you need to type
thisinto afile as described in the More sequences topic. If you do try typing it at the >>> prompt you
will need to add extra blank lines to tell Python when you finish a block, for example after the myLi st
= line. It's actually quite a good way of learning where blocks start and stop: to type the code in and
seeif you correctly guess where an extra line will be needed. It should be where the indentation
changes!

The other gotcha with for loops is that you can't del ete items from the collection that you areiterating
over, otherwise the loop will get confused. It's abit like the old cartoon character cutting off the
branch of atree while sitting on it! The best way to deal with this situation is to use a different kind of
loop, which we are going to discuss next. However to understand how to remove e ements safely we
need to wait until we cover yet another topic, that of branching, so we will explain this subject when
we get there,

It's worth noting that VB Script and JavaScript each have loop constructs for looping over the
elementsin a collection. | won't discuss them in detail here, but the VBScript construct isf or
each...in... andtheJavaScript versionisfor...in... Youcanlook themup in thereevant
help pages if you want to see the details.

WHILE Loops

FOR loops are not the only type of looping construct available. Which is just as wel, since FOR loops
require us to know, or be able to calculate in advance, the number of iterations that we want to
perform. So what happens when we want to keep doing a specific task until something happens but
we don't know when that something will be? For example, we might want to read and process data
from a user until the user tells us to stop, so we won't know in advance how many data items the user
wants to have processed. We just want to keep on processing data until the user says enough. That's
possible but kind of tricky, in a FOR loop.

To solve this problem we have another type of loop: the WHILE |oop.

It looks like this in Python:

>>>) =1

>>> while j <= 12:
print("% x 12 = %" % (j, j*12))
=i+l

Let's walk through what's happening.

1. Firstweinitidizej to 1, initidizing the control variable of awhile loop is avery important
first step, and a frequent cause of errors when missed out.

2. Next we execute the whi | e statement itself, which evaluates a boolean expression

3. Iftheresult is Trueit proceeds to execute the indented block which follows. In our example
j islessthan 12 so we enter the block.

D:\DOC\HomePage\l 2p\tutl oops.htm Page 60

Looping theloop 12/04/2010

4. We execute the print statement to output the first line of our table.

5. Thenext line of the block increments the control variable, j . In this caseit's the last indented
line, signifying the end of the while block.

6. We go back up to thewhi | e statement and repeat steps 4-6 with our new value of j .

7. Wekeep on repesting this sequence of actions until j reaches 13.

8. At that point thewhi | e test will return False and we skip past the indented block to the next
line with the same indentation as thewhi | e statement.

9. Inthis casethere are no other lines so the program stops.

By now that should fed pretty straightforward. Just one thing to point out - do you see the colon (:)
at the end of thewhi | e (and f or) lines above? That just tells Python that there's a chunk of code (a
block) coming up. As welll seein amoment, other languages have their own ways of telling the
interpreter to group lines together, Python uses a combination of the colon and indentation.

VBScript

Let'slook at VBScript's version of the while loop:

<script type="text/vbscript">

DIMJ

J =1

Wiile J <= 12
MsgBox J & " x 12 =" & J*12
J=J+1

Wend

</script>

This produces the same result as before but notice that the loop block is delimited by the keyword
Wend (short for While End obviously!). Other than that it works pretty much exactly like the Python
one.

JavaScript

<script type="text/javascript">

=1

while (j <= 12){
docunent.wite(j," x 12 = ",j*12,"
");
j = j++;
b

</script>

As you seethe structureis pretty similar just some curly brackets or braces instead of the Wwend in
VBScript. (Remember that j++ in JavaScript means increment the value of j) Note that unlike Python,
neither VB Script nor JavaScript need any indentation, that's purely to make the code more readabl e.

Finally it's worth comparing the JavaScript f or and whi | e loops. Recall that thef or loop looked
likethis:

for (j=1, j<=12; j++){....}

D:\DOC\HomePage\l 2p\tutl oops.htm Page 61

Looping theloop 12/04/2010

Now, that is exactly the same structure as the whi | e loop, just compressed into oneline. The
initializer, the test condition and the loop modifier are all there clearly seen. So in fact a JavaScript
f or loopissimply awhi | e loop in a more compact form. It would be possible to do without the

f or loop completdy and only have whi | e loops, and that's exactly what some other languages do.

More Flexible L oops

Coming back to our 12 times table at the beginning of this section. The loop we created is all very
well for printing out the 12 times table. But what about other values? Can you modify the loop to
make it do the 7 times table say? It should look likethis:

>>> for j in range(l,13):
print("% x 7 = 9%l" % (j,]*7))

Now this means we have to change the 12 to a 7 twice. And if we want another value we haveto
change it again. Wouldn't it be better if we could enter the multiplier that we want?

We can do that by replacing the values in the print string with another variable. Then set that variable
before we run the loop:

>>> multiplier = 12
>>> for j in range(1,13):
print("% x % = %d" % (j, multiplier, j*multiplier))

That's our old friend the 12 times table. But now to change to the seven times, we only need to
change the value of 'multiplier'. Try typing this program into a Python script file and running it from a
command prompt. Then edit the multiplier value to try out some different tables.

Notice that we have here combined sequencing and loops. We havefirst a single command,
mul tiplier = 12 followed, in sequence by af or loop.

L ooping the loop

Let's take the previous exampl e one stage further. Suppose we want to print out all of the times tables
from2to 12 (1 istoo trivial to bother with). All wereally need to do is set the multiplier variable as
part of aloop, likethis:

>>> for multiplier in range(2,13):
for j in range(1,13):
print("% x % = %" % (j,multiplier,j*multiplier))

Notice that the part indented inside thefirst f or 1oop is exactly the same loop that we started out
with. It works as follows:

1. Weseat multiplier to thefirst value (2) then go round the second, inner loop.
2. Then we set multiplier to the next value (3) and go round the inner loop again,
3. and soon.

This technique is known as nesting loops.

One snag is that al the tables merge together, we could fix that by just printing out a separator line at
the end of thefirst loop, likethis:

D:\DOC\HomePage\l 2p\tutl oops.htm Page 62

Looping theloop 12/04/2010

>>> for multiplier in range(2,13):
for j in range(1l,13):
print "%l x % = %" % (j,multiplier,j*multiplier)
print("------------------- ")

Note that the second print statement lines up with the second 'for', it is the second statement in the
loop sequence. Remember, the indenting leve is very important in Python.

Just for comparisons sake |et's see how that 100ks in JavaScript too:

<script type="text/javascript">
for (multiplier=2; multiplier < 13; nultiplier++){
for (j=1; j <= 12 ; j++){

docunent.wite(j, " x ", multiplier, " =", j*multiplier, "
");
docunment. wite("---------------
");
</script>

Experiment with getting the separator to indicate which tableit follows, in effect to provide a caption.
Hint: Y ou probably want to use the multiplier variable and a Python format string.

Other loops

Some |anguages provide more |ooping constructs but some kind of f or and whi | e are usualy there.
(Modula 2 and Oberon only provide whi | e loops since whileloops can simulate f or loops - as we
saw above.) Other loops you might see are:

do-while
Same as a while but thetest isat the end so the loop always executes at |east once.
repeat-until
Similar to above but thelogic of thetest isreversed.
GOTO, JUMP, LOORP etc
Mainly seen in older languages, these usually set a marker in the code and then explicitly
jump directly to that marker.

Pointsto remember

® FORIoops repeat a set of commands for a fixed number of iterations.
® \WH LE loops repeat a set of commands until some terminating condition is met. They may
never execute the body of the loop if the terminating condition is false to start with.
® Other types of loops exist but FOR and WHI LE are nearly always provided.
® Pythonfor loopsarereally f or each loops - they operate on alist of items.
* Loops may be nested one inside another.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutl oops.htm Page 63

A Little Bit of Style 12/04/2010

Coding Style

What will we cover?

* Several new usesfor comments
* How to layout code using indentation to improve readability
* Anintroduction to the use of modules for storing our programs

Comments

I've already spoken about comments in the 'More Sequences' section. However there are some other
things we can do with comments and I'll enlarge on those here:

Version history information

It is good practiceto create afile header at the start of each file. This should provide details such as
the creation date, author, date of last change, version and a general description of the contents. Often
alog of changes. This block will appear as a comment:

HHHHHHHHTH B R HHEH TR BRI
Modul e: Spam py

Aut hor: A J. Gauld

Dat e: 1999/ 09/ 03

Version: Draft 0.4

Thi s nodul e provi des a Spam cl ass whi ch can be
combi ned with any other type of Food object to create
i nteresting neal combi nations.

HHHAHHBHH AR R R R

Log:

1999/ 09/ 01 AJG - File created

1999/ 09/ 02 AJG - Fixed bug in pricing strategy

1999/ 09/ 02 AJG - Didit right this tine!

1999/ 09/ 03 AJG - Added broiling nethod(cf Change Req #1234)
HHHBHHBHH AR R R H R

i mport sys, string, food

Thus when you first open afileit should contain a nice summary of what thefileis for, what's
changed over time and who did it and when. Thisis particularly important if you are working on a
team project and need to know who to ask about the design or the changes. There are version control
tools available that can help automate the production of some of this documentation, but they are
outside the scope of this tutorial.

Notethat | put the description in between two sets of triple quotes. Thisis a Python specific trick
known as a documentation string that makes the description available to Python's built-in
hel p() function as well see shortly.

It is also worth noting that there are source code repository tools which can automatically maintain
things like the author, filename, and version log details. Once you start using a source code repository
(such as SCCS, CVS, Subversion or ClearCase) it is worth taking the time to investigate those
features as they can eiminate alot of clerical administration of comments.

D:\DOC\HomePage\l 2p\tutstyle.htm Pege 64

A Little Bit of Style 12/04/2010
Commenting out redundant code

This technique is often used to isolate a faulty section of code. For example, assume a program reads
some data, processes it, prints the output and then saves the results back to the datafile. If the results
are not what we expect it would be useful to temporarily prevent the (erroneous)data being saved
back to the file and thus corrupting it. We could simply del ete the relevant code but aless radical
approach is simply to convert the lines into comments like so:

data = readData(datafil e)
for itemin data:
resul ts. append(cal cul ateResult(item)
printResults(results)
HEHH TR

Comrent out till bug in cal culateResult fixed
for itemin results:
dat aFil e. save(item

HEHBH IR
print 'Programterm nated

Once the fault has been fixed we can simply del ete the comment markers to make the code active
once more. Some editing tools, including IDLE, have menu options to comment out a sel ected block
of code, and to uncomment it |ater.

Note that many programmers editors, including IDLE, have a feature whereby you can select a
section of code and get the editor to comment it out automatically and then uncomment it when done.
Thisisis the Format->Comment Out Region menu itemin IDLE.

Documentation strings

All languages allow you to create comments to document what a function or module does, but a few,
such as Python and Smalltalk, go one stage further and allow you to document the function in away
that the language/environment can use to provide interactive help while programming. In Python this
isdoneusingthe """docunentation""" stringstyle

cl ass Spam
"""A nmeat for conbining with other foods

It can be used with other foods to make interesting neals.
It comes with lots of nutrients and can be cooked using many
di fferent techni ques"""

def __init_ (self):
pass # ie. it does nothing!

hel p(Span)

Note: We can access the documentation string by using the hel p() function. Modules, Functions
and classes/methods can all have documentation strings. For example try:

>>> jnport sys
>>> help (sys.exit)
Hel p on built-in function exit:

exit(...)
exit([status])

D:\DOC\HomePage\l 2p\tutstyle.htm Page 65

A Little Bit of Style 12/04/2010

Exit the interpreter by raising SystenExit(status).
If the status is omtted or None, it defaults to zero (i.e., success).
If the status is nuneric, it will be used as the systemexit status.
If it is another kind of object, it will be printed and the system
exit status will be one (i.e., failure).

(END)

To get out of help mode hit the letter 'q'(for quit) when you see the (END) marker. If more than one
page of help is present you can hit the space bar to page through it. If you are using IDLE, or other
IDE, then you likely won't seethe (END) marker rather it will simply display al the text and you need
to use the scroll bars to go back and read it.

Onefina helper functionisdi r () which displays all the features that Python knows about for a
particular object. Thusif you want to know what functions or variables are contained in the sys
modul e, for example you could do this:

>>> jnport sys
>>> dir(sys)

[..... "argv', "builtin_nodul e_nanes', 'byteorder', 'copyright',
exit', "stderr', 'stdin', 'stdout', 'subversion',
‘version', 'version_info', 'warnoptions', 'w nver']

Y ou can then select likely candidates and use help() to get more details. (Note, | have missed out
many of the entries to save space!) Thisis particularly useful if you are using a modul e that does not
have good documentation (or even has no documentation!)

Block Indentation

Thisis one of the most hotly debated topics in programming. It almost seems that every programmer
has his/her own idea of the best way to indent code. As it turns out there have been some studies done
that show that at least some factors are genuindy important beyond cosmetics - ie they actually help
us understand the code better.

The reason for the debate is simple. In most programming languages the indentation is purely
cosmetic, an aid to the reader. (In Python it is, in fact, needed and is essential to proper working of
the program!) Thus:

< script type="text/vbscript">
For I =1 TO 10
MsgBox |
Next
</script>

Is exactly the same as:

< script type="text/vbscript">

For | =1 TO 10
MsgBox |

Next

</script>

so far asthe VBScript interpreter is concerned. It's just easier for us to read with indentation.

The key point is that indentation should reflect the logical structure of the code thus visually it should
follow the flow of the program. To do that it helpsif the blocks look like blocks thus:

D:\DOC\HomePage\l 2p\tutstyle.htm Page 66

A Little Bit of Style 12/04/2010

) 9,0,0.0.0,.0.0.9,:0.0,0.9,0,0.9,0,0.0,0:¢
) 9.9,0.9,9,:9,9,0,.9,0,0.9,0,¢.9.4
) 9.9,0.9,9,:9.9,0.9,0,0.9,0,0.9.4
) 9.9,0.9,9,:9,9,0,.9,0,0.9,0,¢.9.4

which reads better than:

becauseit's clearly all one block. Studies have shown significant improvements in comprehension
when indenting reflects the logical block structure. In the small samples we've seen so far it may not
seem important but when you start writing programs with hundreds or thousands of lines it will
become much more so.

Variable Names

The variable names we have used so far have been fairly meaningless, mainly because they had no
meaning but simply illustrated techniques. In general it's much better if your variable names reflect
what you want them to represent. For examplein our times table exercise we used 'multiplier’ as the
variable to indicate which table we were printing. That is much more meaningful than simply 'm'’ -
which would have worked just as well and been less typing.

Its a trade-off between comprehensibility and effort. Generally the best choiceisto go for short but
meaningful names. Too long a name becomes confusing and is difficult to get right consistently (for
example | could haveusedt he_t abl e_we_are_printing instead of mul ti pl i er but it'sfar too
long and not really much clearer.

Saving Your Programs

While the Python interactive interpreter prompt (>>>) is very useful for trying out ideas quickly, it
loses al you type the minute you exit. In the longer term we want to be able to write programs and
then run them over and over again. To do this in Python we create atext file with an extension . py
(thisis a convention only, you could use anything you like. But it's a good idea to stick with
convention in my opinion...). You can then run your programs from an Operating System command

prompt by typing:

C.\ W NDOWE> pyt hon spam py

Where spam py isthe name of your Python program file and the C: \ W NDOWS> is the operating
system prompt.

If you did follow convention you can also start your programs by double clicking them in Windows
Explorer since Windows knows to associate the . py extension with the Python interpreter.

The other advantage of using files to store the programs is that you can edit mistakes without having
to retype the whole fragment or, in IDLE, cursor all the way up past the errors to reselect the code.
IDLE supports having afile open for editing and running it from the Run->Run module menu item (or
the F5 keyboard shortcut).

D:\DOC\HomePage\l 2p\tutstyle.htm Page 67

A Little Bit of Style 12/04/2010

From now on | won't normally be showingthe >>> prompt in examples, I'll assume you are
creating the programs in a separate file and running them either within IDLE or from a command
prompt (my personal favourite).

Note for Windows users

Under Windows you can set up afile association for filesending . py within Explorer. Thiswill
allow you to run Python programs by simply double clicking the fil€'s icon. This should aready have
been done by the installer. Y ou can check by finding some .py files and trying to run them. If they
start (even with a Python error message) it's set up. (Theicon should be the Python logo.) The
problem you will likely run into at this point is that the files will runin a DOS box and then
immediately close, so fast you scarcely even see them! There are a couple of options:

* Thefirst way is simplest and involves putting the following line of code at the end of each
program:
input("Ht ENTER to quit")
Which simply displays the message and waits for the user to hit the ENTER or Return key.

Wewill discussi nput () inthe next topic.

® The second technique uses the Windows Explorer settings. The procedure is fairly standard
but may vary according to the version of Windows you have. | will describe Windows XP

Home.

1. Firstsdecta. py fileand go tothe Tool s- >Fol der Opti ons menu item.

2. Inthedialog box select theFi | e Types tab.

3. Scroll down till you find the PY file type and click on it to select it.

4. Click the Advanced button at the bottom.

5. Inthenew dialog sdect open fromthelist and click Edi t . . .

6. Inthenew dialog you should seethe Appl i cati on. .. linesay something like:
C: \ PYTHON3\ pyt hon. exe "9%" %
Editittoadd a-i after thepyt hon. exe and beforethe%d,, likethis:
C:\ PYTHON3\ pyt hon. exe -i "%d" %

7. Now closeall thediaogs.

Thiswill stop Python from exiting at the end of your program and leave you at the >>>
prompt where you can inspect variable values etc, or just exit manually. (An aternative trick,
which | prefer, is, at step 5, to add anew option called Test aongside the existing Open. Set
the Test option to the command line above, complete with - i . This alows you to Right Click
in Explorer and choose Open to run the program and have it close automatically or choose
Test to run the program finishing in Python. The choice of behaviour is then yours.)

Notefor Unix users

D:\DOC\HomePage\l 2p\tutstyle.htm Pege 68

A Little Bit of Style 12/04/2010

Thefirst line of a Python script file should contain the sequence #! followed by the full path of
python on your system. (This is sometimes known as the shebang line.) Y ou can find that by typing,
at your shell prompt:

$ whi ch python
On my system the line looks like:
#! [usr/ 1 ocal / bin/pyt hon

Thiswill allow you to run the file without calling Python at the same time (after you set it to be
executable via chmod - but you knew that already I'm sure!):

$ spam py

Y ou can use an even more convenient trick on most modern Unix systems (including al Linux
distros) which replaces the path information with / usr / bi n/ env/ pyt hon, likethis:

#!' [usr/ bi n/ env/ pyt hon

That will find where Python isin your path automatically. The only snag is where you may have two
or more different versions of Python installed and the script will only work with one of them (maybe
it uses a brand new language feature, say), in that case you will be better with the full path technique.

This#! line doesn't do any harm under Windows/Mac ether, sinceit just looks like a comment, so
those users can put it in too, if their codeis likely to ever be run on a unix box.

VBScript & JavaScript

You VBScript and JavaScript users can ignore the above, you've already been saving your programs
asfiles, it's the only way to get them to work!

Pointsto remember

¢ Comments can be used to temporarily prevent code from executing, which is useful when
testing or 'debugging’ code.

* Comments can be used to provide an explanatory header with version history of typefile.

* Documentation strings can be used to provide run-time information about a module and the
objects within it.

¢ Indentation of blocks of code hel ps the reader see clearly thelogical structure of the code.

* By typing a python programinto afile instead of at the Python '>>>' prompt the program
can be saved and run on demand by typing $ pyt hon prognane. py at the command
prompt or by double clicking the filename within an Explorer window on Windows.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutstyle. htm Page 69

[nput 12/04/2010

Conversing with the user

What will we cover?

How to prompt the user to enter data and how to read that data once it is entered.

We will show how to read both numerical and string based data.

The concepts of stdin and stdout

We look at command line interfaces and how to read data input as command line arguments.
We discuss the EasyGUI module for displaying simple data entry dialog boxes

So far our programs have only dealt with static data. Data that, if need be, we can examine before the
program runs and thus write the program to suit. Most programs aren't like that. Most programs
expect to be driven by a user, at least to the extent of being told what file to open, edit etc. Others
prompt the user for data at critical points. This aspect of programming iswhat is referred to as the
User Interface and in commercia programs designing and building the user interfaceis ajob for
specialists trained in human machine interaction and ergonomics. The average programmer does not
have that luxury so must make do with some common sense, and careful thought about how users will
use the program. The most basic feature of a User Interface is displaying output and we have already
covered the most primitive way of doing that via the Python pri nt function (and JavaScript's
write() function aswell asthe VBScript MsgBox dialog). The next step in User Interface designis
to take input directly from the user. The simplest way to do that is for the program to ask for the
input at run time, the next simplest way is for the user to pass the data in when he or she starts the
program, finally we have graphical user interfaces (GUIs) with text entry boxes etc. In this topic we
look mainly at the first two methods. We introduce GUI programming much later in the tutor because
it is significantly more complex, however thereis a module which allows us to do very basic GUI style
dialog boxes for data entry in Python and we will briefly consider that.

Let's see how we can get data from a user in anormal Python interactive session running in IDLE or
an OS terminal. Afterwords we'll try doing the same in a program.

Python user input

We can get input from a user in Python likethis:

>>>> print(input("Type sonething: "))

Asyou seei nput () simply displays the given prompt - "Type something" in this case - and captures
whatever the user typesin response. pri nt () then displays that response. We could instead assign it
toavariable

>>> resp = input("Wat's your nane? ")

And now we can print out whatever value was captured:

>>> print("H " + resp + ", nice to neet you")

Notice that thistime | have chosen not to use the string formatting operator to display the value
stored in the variabler esp and have instead just inserted the val ue between two strings joining all
three strings together using the string addition operator. The value of r esp is the one captured from
the user by i nput ().

D:\DOC\HomePage\l 2p\tuti nput.htm Page 70

[nput 12/04/2010

Notice too in both examples the use of spaces inside the strings, both in the prompt given to

i nput () but asointhe output string. In particular notice the third part of the output string started
with a comma followed by a space. It is a common mistake when producing output like that to get the
spacing wrong so check carefully when testing your programs.

Thisis great for reading strings. But what about other data types? The answer is that Python comes
with afull set of data conversion functions that can convert a string to another data type. Obviously
the data in the string has to be compatible with the type, otherwise you will get an error!

As an exampl e lets take our multiplication table example and modify it to read the multiplier value
from the user:

>>> nultiplier = input("Waich nultiplier do you want? Pick a number ")
>>> multiplier = int(nmultiplier)
>>> for j in range(l,13):

print("% x % = %" % (j, multiplier, j * multiplier))

Here we read the value from the user then convert it to an integer using thei nt () conversion
function. (You canusef | oat () to convert to afloating point value too, should you need to). Here
we did the conversion on a separate line to make it clearer what we were doing, but in practicethisis
so common that we usually just wrap thei nput () cal insidethe conversion, likethis:

>>> nultiplier = int(input("Which multiplier do you want? Pick a nunmber "))
>>> for j in range(1,13):
print("% x %d = %" % (j, multiplier, j * multiplier))

Y ou see? Wejust wrapped thei nput () cal insidethecall toi nt ().

So what about using thisin areal program? Y ou recall the address book examples using a dictionary
that we created in the raw materials topic? Let's revisit that address book now that we can write loops
and read input data.

create an enpty address book dictionary
addr essBook = {}

read entries till an enpty string
print() # print a blank line
nane = "-" # non bl ank

while nane !'= "":
name = i nput("Type the Name(leave blank to finish): ")

if nanme != :
entry = input("Type the Street, Town, Phone.(Leave blank to finish): ")
addr essBook[name] = entry

now ask for one to display
name = "-"
while nane !'= "":
name = i nput("Wich nane to display?(leave blank to finish): ")
if nanme = "":
print(nanme, addressBook[nane])

That's our biggest program so far, and although the user interface design is a bit clunky it does the
job. We will see how to improveit in alater topic. Some things to note in this program are the use of
the boolean test in thewhi | e loops to determine when the user wants us to stop. Also note that
whereas in the Raw Materials example we used allist to store the data as separate fiel ds we have just

D:\DOC\HomePage\l 2p\tuti nput.htm Page 71

[nput 12/04/2010

stored it as asingle string here. That's because we haven't yet covered how to break down a string
into separate fields. Well cover that in alater topic too. In fact the address book program will be
cropping up from time to time through the rest of the tutorial as we gradually turn it into something
useful.

VBScript Input

In VBScript the InputBox statement reads input from the user thus:

<script type="text/vbscript">

Di m I nput

I nput = | nput Box("Enter your nane")
MsgBox ("You entered: " & Input)
</script>

The | nput Box function simply presents a dialog with a prompt and an entry field. The contents of the
entry field are returned by the function. There are various values that you can pass to the function
such as atitle string for the dialog box in addition to the prompt. If the user presses Cancel the
function returns an empty string regardless of what is actually in the entry field.

Hereisthe VBScript version of our Address book example.

<script type="text/vbscript">

Dimdict,name,entry ' Create some vari abl es.
Set dict = CreateQoject("Scripting.Dictionary")
nanme = | nput Box("Enter a nane", "Address Book Entry")
VWil e name <> ""
entry = I nput Box("Enter Details - Street, Town, Phone numnber",

"Addr ess Book Entry")
dict. Add name, entry ' Add key and details.

nane = | nput Box("Enter a nanme","Address Book Entry")
Wend

Now read back the val ues
nane = | nput Box("Enter a nane","Address Book Lookup")
VWil e name <> ""

MsgBox(name & " - " & dict.ltem(name))

nane = | nput Box("Enter a nane","Address Book Lookup")
Wend
</script>

The basic structure is absolutdly identical to the Python program although a few lines longer because
of VBScript's need to pre-declare the variables with Di mand because of the need for a
Wend statement to end each |oop.

Reading input in JavaScript

JavaScript presents us with a challenge because it is a language primarily used within aweb browser.
We have a choice of using asimple input box like VBScript using the pr onpt () function or instead
we can read from an HTML form element (or, in Internet Explorer, use Microsoft's Active Scripting
technol ogy to generate an | nput Box dialog like the one used by VBScript). For variety I'll show you
how to use the HTML form technique. If you are unfamiliar with HTML forms it might be worth
finding an HTML reference or tutorial to describe them, alternatively just copy what | do here and
hopefully it will be sdf explanatory. | will be keeping it very simple, | promise.

D:\DOC\HomePage\l 2p\tuti nput.htm Page 72

[nput 12/04/2010

The basic structure of our HTML example will be to put the JavaScript code in afunction, although
we haven't covered these yet. For now just try to ignore the function definition bits.

<script type="text/javascript">
function nyProgram)({

alert("We got a value of " + docunent.entry. data. val ue);
}

</script>

<form nane="entry' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange='nyProgran()'>

</fornp

The program just consists of asingle linethat displaysan al ert box (very similar to VBScript's
MsgBox) containing the value from the text field. The form displays a prompt message (within the
<P></ P> pair) and an input field. The input field has an attribute, onChange, that tells JavaScript that
when the | nput field changes it should execute the code given, in this caseacall to myPr ogram The
form has aname, ent ry withinthedocunent context, and the | nput field has a name, dat a within
the entry form context. Thus within the JavaScript program we can refer to the value of thefield as:

docunent . entry. dat a. val ue

I'm not going to show the address book example in JavaScript because the HTML aspects become
more complex and the use of functions increases and | want to wait till we have covered those in their
own topic.

A Simple Python GUI Tool

Creating afull blown GUI is quite a challenge and we need to cover alot more material before being
ableto tackleit. However thereis a module called EasyGui which makes it possible to at least interact
with the user in a GUI like fashion via dialog boxes. EasyGui is not part of the standard Python library
of modules but must be downloaded separately from:

http://easygui.sourceforge. net/current_version/index. htm

You will also find afull tutorial on that site showing all of the different options possible. We will 1ook
at three of the simplest:

* A Message box for displaying output,
* An Input box for getting a string from the user
* AnInput box for getting a number from the user

Thefirst thing to do is download the package and copy the python file into the site-packages fol der
within the Lib folder of your Python installation. On my PC that is:

C:\ Pyt hon3\ Li b\ si t e- packages

Then you can import the module as usual and access the various functions. Hereis asimple
input/output sequence:

D:\DOC\HomePage\l 2p\tuti nput.htm Page 73

[nput 12/04/2010

i nport easygui
nanme = easygui.enterbox("Wat is your name?", "Nanme D al og")
easygui . msghox("Hell o "+nane+" nice to neet you!", "Geeting Dial og")

Notice the use of the module name to prefix the functions. Also notice that the second string we
passed into the function is displayed as the title of the dialog box.

| think you will agree that using EasyGui is nearly as easy to useasi nput () ! Let'sfinally look at our
multiplication example with EasyGui:

i nport easygui

output =""
mul tiplier = easygui.integerbox("Which mtiplier?", "Miltiplier dialog")
for j in range(1,13):

output = output + "%l x %l = %\n" % (j, nultiplier, j * nultiplier)

easygui . msgbox(output, "Muiltiplication table")

There are many other options in EasyGui that will make your programs look much more like a GUI
application. Experiment with the functions available and try to repeat some of our other examples,
such as the address book using EasyGUI.

Next we look at a different kind of user interaction that is used where the program just needs some
initial values and then generates it's output with no further intervention from the user.

A word about stdin and stdout

NOTE: stdinisabit of computer jargon for the standard input device (usually the keyboard).

stdout refers to the standard output device (usually the screen). You will quite often see references
to the terms stdin and stdout in discussions about programming. (Thereis athird, less commonly
used term, stderr, which is where all console error messages are sent. Normally stderr appears in the
same place as stdout.) These terms are often called data streams since data appears as a stream of
bytes flowing to the devices. stdin and stdout are made to look like files (we'll get to those shortly)
for consistency with file handling code.

In Python they all livein thesys module and are called sys. st di n and sys. st dout .

i nput () usesstdin automatically and pri nt () uses stdout. We can also read from stdin and write
to stdout directly and this can offer some advantages in terms of fine control of the input and
output. Here is an example of reading from stdin:

i mport sys

print("Type a value: ", end="') # prevents new ine
val ue = sys.stdin.readline() # use stdin explicitly
print(val ue)

It is amost identical to:

print(input("Type a value: "))

D:\DOC\HomePage\l 2p\tuti nput.htm Page 74

[nput 12/04/2010

The advantage of the explicit version is that you can do fancy things like make st di n point to areal
file so the program reads its input from the file rather than the termina - this can be useful for long
testing sessions whereby instead of sitting typing each input as requested we simply let the program
read its input from afile. (This has the added advantage of ensuring that we can run the test
repeatedly, sure that the input will be exactly the same each time, and so hopefully will the outpui.
This technique of repeating previous tests to ensure that nothing got broken is called regression
testing by programmers.)

Finally hereis an example of direct output to sys. st dout that can likewise be redirected to afile.
print isnearly equivalent to:

sys.stdout.wite("Hello world\n") # \n= new ine

Of course we can usually achieve the same effects using format strings if we know what the data
looks like but if we don't know what the datawill ook liketill runtime then its often easier to just
send it to stdout rather than try to build a complex format string at runtime.

Redirecting stdin & stdout

So how do we redirect stdin and stdout to files? We can do it directly within our program using the
normal Python file handling techniques which we will cover shortly, but the easiest way is to do it
via the operating system.

This is how the operating system commands work when we use redirection at the command prompt:
C>dir
C>dir > dir.txt

The first command prints a directory listing to the screen. The second prints it to afile. By using the
' >' sign wetell the program to redirect st dout tothefiledir. t xt .

We would do the same with a Python program like this:

$ python nyprogram py > result.txt

Which would run nypr ogr am py but instead of displaying the output on screen it would write it to
thefileresul t . t xt . We could see the output later using a text editor like notepad.

(Note that the $ prompt shown aboveis the standard for Linux users - just in case they were fegling
neglected!)
To get stdin to point at afile we simply use a < sign rather than a> sign. Here is a complete

example:

First create afilecalled echoi nput . py containing the following code:

i mport sys

D:\DOC\HomePage\l 2p\tuti nput.htm Page 75

[nput 12/04/2010

= sys.stdin.readline()
le inp.strip() !'="":
print(inp)

np = sys.stdin.readline()
Note: Thestri p() simply chops off the newline character that is retained when reading from
stdin, i nput () does that for you as a convenience. Y ou can now try running that from a command
prompt:

$ python echoi nput. py

The result should be a program that echos back anything you type until you enter a blank line.

Now create asimpletext filecalledi nput . t xt containing some lines of text. Run the last program
again, redirecting input fromi nput . t xt :

$ python echoi nput.py < input.txt

Python echos back what was in the file. But you might recall that we said that pri nt () and
i nput () actually use stdin and stdout internally? That means we can replace the stdin stuff in
echoi nput . py withi nput () likethis:

\Which is much easier in most cases.

By using this technique with multiple different input files we can quickly and easily test our
programs for a variety of scenarios (for example bad data values or types) and do so in arepeatable
and reliable manner. We can a'so use this technique to handle large volumes of datafrom afile while
still having the option to input the data manually for small volumes using the same program.
Redirecting stdin and stdout is a very useful trick for the programmer, experiment and see what
other uses you can find for it.

There is a known bug in Windows XP that breaks input redirection. (If anyone knows whether this
has been fixed in Vista please let me know via the email link at the bottom of the page.) If you start
your program by just typing in the script name, rather than explicitly typing in pyt hon beforeit,
Windows will not display the results on the console! Thereis a registry hack to fix this on

Microsoft's web site, although even the hack isn't quite correct! You need to |ook under
HKEY_CURRENT USER instead of HKEY_LOCAL_MACHI NE as recommended on the web page. My
recommendation is to always explicitly invoke python when dealing with redirected input or output!
(Thanks go to Tim Graber for spotting this and to Tim Peters for telling me about the registry hack
to fix it.)

D:\DOC\HomePage\l 2p\tuti nput.htm Page 76

[nput 12/04/2010

Command Line Parameters

One other type of input is from the command line. For example when you run your text editor from an
operating system command line, like:

$ EDI T Foo.t xt

What happens is that the operating system calls the program called EDIT and passes it the name of
thefile to edit, Foo.txt in this case. So how does the editor read the filename?

In most languages the system provides an array or list of strings contai ning the command line words.
Thus thefirst eement will contain the command itself, the second eement will be the first argument,
etc. There may aso be some kind of magic variable (often called something like argc, for "argument
count™) that holds the number of elementsin thelist.

In Python that list is held by the sys module and called ar gv (for 'argument values'). Python doesn't
need an ar gc type value sincetheusual | en() method can be used to find the length of the list, and
in most cases we don't even need that since we just iterate over the list using Python's f or 1oop, like
this.

i mport sys
for itemin sys.argv:
print(item)

print("The first argunent was:", sys.argv[1l])

Note that this only works if you put it in afile (say args.py) and execute it from the operating system
prompt like this:

C:\ PYTHOM PRQJECTS> pyt hon args.py 1 23 fred
args. py

1

23

fred

The first argument was: 1
C:\ PYTHON\ PROJECTS>

VBScript and JavaScript

Being web page based the concept of command line arguments doesn't really arise. If we were using
them within Microsoft's Windows Script Host environment the situation would be different, and WSH
provides a mechanism to extract such arguments from aWshAr gunent s object populated by WSH at
run time.

That's redlly as far as welll go with user input in this course. It's very primitive but you can write
useful programs with it. In the early days of Unix or PCsit's the only kind of interaction you got. Of
course GUI programs read input too and we will ook more closely at how that's done much later in
thetutorial.

Pointsto remember

D:\DOC\HomePage\l 2p\tuti nput.htm Page 77

12/04/2010

® Usei nput () for reading strings.
® jnput() candisplay astring to prompt the user.
® EasyGui provides a GUI style mechanism equivalent toi nput () and pri nt ()

in Python, where thefirst item is the name of the program.

® Command line arguments can be obtained fromthe ar gv list imported from the sys module

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tuti nput.htm

Page 78

Conditiond's 12/04/2010

Decisions, Decisions

What will we cover?

® The 3rd programming construct - Branching
* Single branches and multiple branches
* Using Boolean expressions

The 3rd of our fundamental building blocks is branching or conditional statements. These are simply
terms to describe the ability of our programs to execute one of several possible sequences of code
(branches) depending on some condition.

Back in the early days of Assembler programming the simplest branch was a JUWP instruction where
the program literally jumped to a specified memory address, usualy if the result of the previous
instruction was zero. Amazingly complex programs were written with virtually no other form of
condition possible - vindicating Dijkstra's statement about the minimum requirements for
programming. When high level languages came along a new version of the JUMP instruction appeared
called GOTO. In fact QBASIC, which is still supplied on the CD ROM with older versions of Windows
(pre XP), still provides GOTO and, if you have QBASIC installed, you can try it out by typing the
following bit of code:

10 PRINT "Starting at |ine 10"

200 =5

30 IF J < 10 GOTO 50

40 PRINT "This line is not printed"
50 STOP

Notice how even in such a short program it takes a few seconds to figure out what's going to happen.
Thereis no structure to the code, you have to literally figureit out as you read it. In large programs it
becomes impossible. For that reason most modern programming languages, including Python,
VBScript and JavaScript, either don't have a direct JUMP or GOTO statement or discourage you
fromusing it. So what do we use instead?

Theif statement

The most intuitively obvious conditional statementisthe if, then, el se construct. It follows the
logic of Englishinthat if some boolean condition (see below for more about this aspect of things) is
true then ablock of statements is executed, otherwise (or else) adifferent block is executed.

Python

It looks like this in Python:

inmport sys # only to let us exit
print("Starting here")

] =95
if j > 10:

print("This is never printed")
el se:

sys.exit()

D:\DOC\HomePage\l 2p\tutbranch.htm Page 79

Conditiond's 12/04/2010

Hopefully that is easier to read and understand than the previous GOTO example. Of course we can
put any test condition we like after thei f , solong asit evaluatesto Tr ue or Fal se, i.e. aboolean
value. Try changing the > to a < and see what happens.

VBScript

VBScript looks quite similar:

<script type="text/vbscript">
MsgBox "Starting Here"
DIMJ
J =5
If J > 10 Then
MsgBox "This is never printed"
El se
MsgBox "End of Progrant
End If
</script>

It's very nearly identical, isn't it? The main differenceisthe use of End | f to indicate the end of the
construct.

And JavaScript too

And of course JavaScript hasani f statement too:

<script type="text/javascript">

var j;

j =5

if (j > 10){
docunent.wite("This is never printed");
}

el se {

docunent.wite("End of progrant);
</script>

Notice that JavaScript uses curly braces to define the blocks of codeinsidethei f part and the

el se part. Also the boolean test is contained in parentheses and thereis no explicit keyword

t hen used. On a point of style, the curly braces can be located anywhere, | have chosen to line them
up as shown purdly to emphasize the block structure. Also if thereis only asingle line within the
block (as we have here) the braces can be omitted entirely, they are only needed to group lines
together into a single block. However, many programmers like to always include the braces since they
avoid inconsistencies and avoid having to go back and add them if we add one extra line to a block.

Boolean Expressions

Y ou might remember that in the Raw Material's section we mentioned a Boolean type of data. We
said it had only two values: Tr ue or Fal se. We very rarely create a Boolean variable but we often
create temporary Boolean val ues using expressions. An expression is a combination of variables and
val ues combined by operators to produce a resultant value. In the following example:

if x < 5:
print(x)

D:\DOC\HomePage\l 2p\tutbranch.htm Page 80

Conditiond's 12/04/2010

X < 5 istheexpression and the result will be Tr ue if X islessthan 5 and Fal se if X is greater than or
equal to 5.

Expressions can be arbitrarily complex provided they evaluate to a single final value. In the case of a
branch that value must be either Tr ue or Fal se. However, the definition of these two values varies
from language to language. In many languages Fal se isthe same as 0 or a non-existent val ue (often
called NULL, Ni I or None). Thus an empty list or string evaluates to false in a Boolean context.
Python works this way and this means we can use awhi | e loop to process alist until thelist is
empty, using something like:

whil e aLi st:
do sonet hing here

Orwecanuseani f statement to test whether alist is empty without resorting to thel en() function
likethis:

if aList:
do sonet hing here

Finally we can combine Boolean expressions using Bool ean operators which can often cut down the
number of i f statements we need to write.

Consider this example:

i f value > maxi mum

print("Value is out of range!")
else if value < mininum

print("Value is out of range!")

Notice that the block of code executed is identical. We can save some work, both for us and for the
computer, by combining both of the testsinto asingletest likethis:

if (value < mninum or (value > maximn):
print("Value is out of range!")

Notice we combined both tests using a boolean or operator. Thisis still a single expression because
Python eval uates the combined set of tests to asingle result. You can think of it as evaluating the first
set of parentheses, then the second set of parentheses and finally combines the two calcul ated values
to formthefinal single value, either True or False. (In practice Python uses a slightly more efficient
technique known as short-circuit evaluation which we discuss in the Functional Programming topic)

Very often if we think carefully about the tests we need to carry out in our natural language then we
will find oursalves using conjunctions like 'and', 'or' and 'not'. If so there's a very good chance we can
write a single combined test rather than many separate ones.

Chaining if statements
Y ou can go on to chain these if/then/e se statements together by nesting them one inside the other.

Hereis an example in Python:

Assune price created previously...
price = int(input("What price? "))

D:\DOC\HomePage\l 2p\tutbranch.htm Page 81

Conditiond's 12/04/2010

if price == 100:
print("I'Il take it!")
el se:
if price > 500:
print("No way Jose!")
el se:
if price > 200:
print("How about throwing in a free nouse mat?")
el se:
print("price is an unexpected value!")

Note 1:we used == (that's a double = sign) to test for equality in thefirsti f statement, whereas we
use = to assign values to variables. Using = when you mean to use == is one of the more common
mistakes in programming Python, fortunately Python warns you that it's a syntax error, but you might
need to ook closely to spot the problem.

Note 2: A subtle point to notice is that we perform the greater-than tests from the highest value down
to the lowest. If we did it the other way round the first test, which would bepri ce > 200 would
always be true and we would never progress to the > 500 test. Similarly if using a sequence of
less-than tests you must start at the lowest value and work up. This is another very easy trap to fall
into.

VBScript & JavaScript

You can chaini f statementsin VVBScript and JavaScript too but as it's preity self evident I'll only
show a VVBScript example here:

<script type="text/vbscript">
DM Price
price = I nputBox("What's the price?")
price = Cint(price)
If price = 100 Then
MsgBox "I'Il take it!"
El se:
If price > 500 Then
MsgBox "No way Jose!™
El se:
If price > 200 Then
MsgBox "How about throwing in a free nouse mat too?"

El se:
MsgBox "price is an unexpected val ue!"
End If
End If
End If
</script>

The only things to note here are that thereisan End | f statement to match every | f statement and
that we used the VB Script conversion function Cl nt to convert from the input string value to an
integer.

Case statements

One snag with chaining, or nesting i f / el se statements is that the indentation causes the code to
spread across the page very quickly. A sequence of nestedi f/ el se/ i f/ el se. .. issuch acommon
construction that many languages provide a special type of branch for it.

Thisisoftenreferredtoasa Case or Switch statement and the JavaScript version looks like:

D:\DOC\HomePage\l 2p\tutbranch.htm Page 82

Conditiond's 12/04/2010

<script type="text/javascript">
function doArea(){
var shape, breadth, length, area;

shape = docunent . ar ea. shape. val ue;
breadth = parsel nt (docunent . ar ea. br eadt h. val ue);
I en = parsel nt (docunent. area. | en. val ue) ;

switch (shape){
case 'Square':

area = len * len;
alert("Area of " + shape + " =" + area);
br eak;

case 'Rectangl e':
area = len * breadth;
alert("Area of " + shape + " =" + area);
br eak;

case 'Triangle':
area = len * breadth / 2;
alert("Area of " + shape + " =" + area);
br eak;

default: alert("No shape matching: " + shape)

3

</script>

<f orm nane="ar ea" >
Length: <input type="text" name="len">
Breadth: <input type="text" nanme="breadth">
Shape: <sel ect nane="shape" size=1 onChange="doArea()">
<option val ue="Squar e" >Squar e
<option val ue="Rect angl e">Rect angl e
<option val ue="Tri angl e">Tri angl e
</ sel ect>
</fornp

The HTML form code just alows us to capture the details and then when the user selects a shape it
calls our JavaScript function. The first few lines simply create some local variables and convert the
strings to integers where needed. The bold section is the bit we are really interested in. It selects the
appropriate action based on the shape value, notice, by the way, that the parentheses around

shape arerequired. Each block of code within the case structure is not marked using curly braces, as
you might expect, but is instead terminated by abr eak statement. The entire set of case statements
for theswi t ch is, however, bound together as a block by a single set of curly braces.

Finally note thefinal conditionisdef aul t which issimply a catch-all for anything not caught in the
preceding Case statements.

Why not seeif you can extend the example to cover circles as well? Remember to add a new option to
the HTML form as well as a new case to the switch.

VBScript Select Case

VBScript has aversion too:

<script type="text/vbscript">

Di m shape, |ength, breadth, SQUARE, RECTANGLE, TRI ANGLE

SQUARE = 0

RECTANGLE = 1

TRI ANGLE = 2

shape = Clnt (Il nputBox("Square(0), Rectangle(1l) or Triangle(2)?"))

D:\DOC\HomePage\l 2p\tutbranch.htm Page 83

Conditiond's 12/04/2010

| ength = CDbl (I nput Box("Lengt h?"))
breadth = CDbl (I nput Box(" Breadt h?"))
Sel ect Case shape

Case SQUARE
area = length * length
MsgBox "Area = " & area
Case RECTANGLE
area = length * breadth
MsgBox "Area = " & area

Case TRI ANGLE
area = length * breadth / 2

MsgBox "Area = " & area
Case Hl se

MsgBox " Shape not recogni zed"
End Sel ect
</script>

As with the JavaScript example the first few lines simply collect the data from the user and convert it
into the right type. The bold Sel ect section shows the VB Script case construct with each successive
Case statement active as a block terminator for the previous one. The whole Sel ect construct is
closed withthe End Sel ect statement. Finaly thereisaCase El se clause which, likethe

def aul t in JavaScript catches anything not caught in the Cases above.

One other feature worth pointing out is the use of Symbolic Constants instead of numbers. That is the
uppercase variables SQUARE, RECTANGLE and TRI ANGLE are there simply to make the code easier
to read. The uppercase names are simply a convention to indicate that they are constant values rather
than conventional variables, but VBScript allows any variable name you like.

Python multi-selection

Python does not provide an explicit case construct but rather compromises by providing an easier
i f/el seif/elseformat:

menu = """

Pick a shape(1-3):
1) Square
2) Rectangl e
3) Triangle

shape = int(input(nenu))
if shape == 1:

length = float(input("Length: "))

print("Area of square =", length ** 2)
elif shape ==

length = float(input("Length: "))

width = float(input("Wdth: "))

print("Area of rectangle =", length * width)
elif shape == 3:

I ength = float(input("Length: "))

width = float(input("Wdth: "))

print("Area of triangle =", length * width/2)
el se:

print("Not a valid shape, try again")

D:\DOC\HomePage\l 2p\tutbranch.htm Page 84

Conditiond's 12/04/2010

Notetheuseof elif andthefact that the indentation (all important in Python) does not change
(unlike the nested if statement example). It's also worth pointing out that both this technique and the
earlier nested if/dse example are equally valid, theel i f techniqueisjust alittle easier to read if there
are many tests. Thefinal condition is an el se which catches anything not caught by the previous
tests, just likethedef aul t in JavaScript and Case El se in VBScript.

VB Script aso provides a slightly more cumbersome version of this technique with
El sel f... Then whichisused in exactly the same way as the Python el i f but israrely seen since
Sel ect Case iseasier to use.

Putting it all together

So far many of our examples have been pretty abstract. To conclude let's take alook at an example
that uses nearly everything we've learned about so far to introduce a common programming
technique, namdly displaying menus for controlling user input.

Hereis the code, followed by a brief discussion:

menu = """
Pick a shape(1-3):
1) Square
2) Rectangl e
3) Triangle
4) Qit
shape = int(input(nenu))
whi |l e shape != 4:
if shape == 1:
length = float(input("Length: "))
print("Area of square =", length ** 2)

elif shape == 2:

length = float(input("Length: "))

width = float(input("Wdth: "))

print("Area of rectangle =", length * width)
elif shape == 3:

length = float(input("Length: "))

width = float(input("Wdth: "))

print("Area of triangle =", length * width / 2)
el se:

print("Not a valid shape, try again")
shape = int(input(menu))

We've added just three lines (in bold) to the previous Python example but in so doing have
significantly enhanced the usability of our program. By adding a'Quit' option to the menu, plus a
while loop we have provided the capability for the user to keep on calculating sizes of different shapes
until she has all the information she needs. Thereis no need to rerun the program manually each time.
The only other line we added was to repeat thei nput (menu) shape selection so that the user gets
the chance to change the shape and, ultimately, to quit.

What the program does is create the illusion to the user that the program knows what they want to do
and does it correctly, acting differently depending on what they input. In essence the user appears to
bein control, whereas in fact, the programmer isin control since he has anticipated all the valid inputs
and how the program will react. The intelligence on display is that of the programmer, not the
machine - computers after all are stupid!

D:\DOC\HomePage\l 2p\tutbranch.htm Page 85

Conditiond's 12/04/2010

Y ou see how easily we can extend our program just by adding a few lines and combining sequences
(the blocks that cal cul ate the area), |oops (the while loop) and conditionals (the if/dif structure).
Dijkstra’s three building blocks of programming. Having covered al three you can, in theory, now go
out and program anything, but there are a few more techniques we can learn to make things a bit
easier, so don't rush off just yet.

Conditional Expressions

One form of branching that is very common is where we want to assign a different value to avariable
depending on some condition. Thisis very easily done using astandardi f / el se condition, like so:

i f sonmeCondition:

val ue = 'foo'
el se:
val ue = 'bar'

However thisis so common that some languages provide a shortcut that is called a conditional
expression structure. In Python this looks like:

value = 'foo' if soneCondition else 'bar'

Thisisidentical to thelonger form above. VBScript doesn't have such a structure but JavaScript does
provide something similar using a slightly cryptic syntax:

<script type="text/javascript">
var soneCondition = true,
var s;

s = (soneCondition ? "foo" : "bar");
docunent.wite(s);
</script>

Notice the strange syntax in the parentheses? Basically it does the same as the Python version but just
uses a more concise set of symbols. Basically it says if the expression before the question mark is true
then return the val ue following the question mark, otherwise return the val ue after the colon. Notice
also that | used parentheses in this example. These aren't required but they often make it more obvious
what is going on and | recommend them when using conditional expressions, even in Python.

These kinds of stylistic shortcuts can be convenient but many programmers find them a but clumsy
and prefer not to use them. My personal adviceis to use them where it makes sense, usually in simple
cases, but avoid themiif it starts to make the code |ook overly complex.

M odifying collections from inside loops

We mentioned in the looping topic that modifying a collection frominside aloop was a difficult thing
to do, but never got round to explaining how to do it! Thereason is, we had to wait for branching to
be explained first. So hereis the solution:

If we need to modify the elements of a collection in place we can use awhi | e loop to make the
changes as we iterate over it. We can do this because in awhi | e construct we have explicit control
over theindex, unlike the situation in af or loop where the index is automatically updated. Let's see
how to delete all zeros from alist:

D:\DOC\HomePage\l 2p\tutbranch.htm Page 86

Conditiond's 12/04/2010

nyList =1[1,2,3,0,4,5,0]
index = 0
whil e index < len(myList):
if nyList[index] == O:
del (nyLi st[i ndex])
el se:
i ndex += 1

print(myList)

The thing to note hereis that we do not increment the index if we remove an item, werely on the
deletion moving everything up so that the old index value now points at the next itemin the
collection. Weuseani f / el se branch to control when we increment the index. It's very easy to make
amistake doing this kind of thing so test your code carefully. Thereis another set of Python functions
which are specifically designed for manipulating list contents and we look at them in the Functional
Programming topic in the advanced section of the tutorial.

Things to Remember

Usei f/ el se to branch

Theel se isoptiona

Multiple decisions can be represented using aCase ori f/ el i f construct

Boolean expressions return Tr ue or Fal se

Combining menus with Case constructs allows us to build awide range of user controlled
applications.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutbranch.htm Page 87

Functions and Modules 12/04/2010

Programming with Modules

| What will we cover?

What modul es are about

Functions as modules

Using module files

Writing our own functions and modul es
An introduction to Windows Script Host

What's a Module?

The 4th element of programming involves the use of modules. In fact it's not strictly necessary, and
using what we've covered so far you can actually write some pretty impressive programs. However,
as the programs get bigger it becomes harder and harder to keep track of what's happening and
where. Wereally need a way to abstract away some of the details so that we can think about the
problems we are trying to solve rather than the minutiae of how the computer works. To some extent
that's what Python, VBScript and JavaScript already do for us with their built in capabilities - they
prevent us from having to deal with the hardware of the computer, how to read the individual keys on
the keyboard etc.

The idea of programming with modules is to alow the programmer to extend the built in capabilities
of the language. It packages up bits of program into modules that we can 'plug in' to our programs.
Thefirst form of module was the subroutine which was a block of code that you could jump to
(rather like the GOTO mentioned in the branching section) but when the block completed, it could
jump back to wherever it was called from. That particular style of modularity is known as a
procedure or function. In Python and some other languages the word module has taken on a more
specific meaning which we will look at shortly, but first let's consider functions a bit more closdly.

Using Functions

Before considering how to create functions let's look at how we use the many, many, functions that
come with any programming language (the set of standard functions available for any given language
often called that language's standard library).

We've aready seen some functions in use and listed others in the operators section of the Raw
Materias topic. Now we'll consider what these have in common and how we can use them in our
programs.

The basic structure of afunction call is as follows:

aVal ue = soneFunction (anArgunent, another, etc...)

That is, the variable aval ue takes on the value obtained by calling a function called soneFunct i on.
The function can accept, inside parentheses, zero or many arguments which it treats like interna
variables. Functions can call other functions internally. In most programming languages (although not
all), even if there are no arguments, we must still provide the parentheses when calling a function.

Let's consider some examples in our various languages to see how this works:

VBScript: Mid(aString, start, length)

D:\DOC\HomePagell 2p\tutfunc.htm Page 88

Functions and Modules 12/04/2010

Thisreturns the next | engt h characters starting at thest art inaStri ng.

<script type="text/vbscript">
Dmtine

time = "MORNI NG EVENI NG AFTERNOON'
MsgBox "Good" & Md(tine, 8, 8)
</script>

This displays "Good EVENING". One feature to note about VBScript is that it does not require
parentheses to group the function's arguments, spaces are usually sufficient, as we have been doing
with MsgBox. However if we combine two functions (as we do here) then the inner one must use
parentheses, my adviceis: if in doubt, use the parentheses.

VBScript: Date

This returns the current system date.

<script type="text/vbscript">
MsgBox Dat e
</script>

There's not much more | can say about that, except that there's a whole bunch of other date functions
for extracting the day, week, hour etc.

JavaScript: startString.replace(searchString, newString)

Returns a new string with thesear chSt ri ng replaced by newSt ri ng, instart String

<script type="text/javascript">

var r,s = "A long and w nding road";
docunment . wite("Original =" + s + "
");
r = s.replace("long", "short");
document . wite("Result =" + r);
</script>

Note: almost everything in JavaScript is an example of a special type of function called a method. A
method is afunction that is associated with an object (as discussed in the Raw Materials topic and in
much more detail later in the tutorial). The main thing to note hereis that the function is "attached” to
the string s by the dot operator which means that s is the string that we will be performing the
substitution upon.

This is nothing new. We have been using thewr i t e() method of the docunent object to display the
output from our JavaScript programs (using docunent . wri t e()) since the beginning of the tutorial,
| just haven't explained the reason behind the dual name format up until now.

Back in the Raw Materials topic we mentioned that JavaScript used a module called Mat h to do
exponentiation. We can see that now.

JavaScript: Math.pow(x,y)

The function in the Math module that we useis pow(x, y) , which raises x to the power y:

<script type="text/javascript">

D:\DOC\HomePagell 2p\tutfunc.htm Page 89

Functions and Modules 12/04/2010

docurment .. wite(Math.pow2,3));
</script>

Python: pow(x,y)

Python also has apow() function which raises x to the power y.

>>> x =2 # we'll use 2 as our base nunber
>>> for y in range(0,11):
print(powmx,y)) # raise 2 to power y, i.e. 0-10

Here we generate values of y from 0 to 10 and call the built-in pow() function passing 2 arguments:
x and y. On each iteration of the loop the current values of x and y are substituted into the pow() cdll
and the result is printed.

Note: The Python exponentiation operator, ** is equivalent to the pow() function.
Python: dir(m)

Another useful function built in to pythonis di r which, when passed the name of a module displays
all of the exported names within the module - including all of the variables and functions that you can
use. Python comes with lots of modules, although we haven't really discussed them up till now. The
di r function gives back alist of valid names - often functions - in that module. Try it on the built-in
functions:

>>> print dir(__builtins__)

Note 1: bui I ti ns isoneof Python's "magic" words so once again we need to surround it with
double underscores - that's two underscores at each end.

Note 2: Tousedi r () on any other module you need to i nport the module first otherwise Python
will complain that it doesn't recognize the name.

>>> jnport Ssys
>>> dir(sys)

You will recall that we met the sys module away back in our first sequences topic. In the output from
that last di r you should spot our old friend exi t buried in the middle of al the other stuff in sys.

Before doing much else we'd better talk about Python modules in a bit more detail.

Using Modules

Python is an extremdy extensible language in that you can add new capabilities by i nport ing
modules. We'll see how to create modul es shortly but for now well play with some of the standard
modul es that ship with Python.

Sys

We met sys aready when we used it to exi t from Python. It has a whole bunch of other useful
functions too, as we saw with the di r function above. To gain access to theseswemust i nport sys:

D:\DOC\HomePagell 2p\tutfunc.htm Page 90

Functions and Modules 12/04/2010

i nport sys # make functions avail abl e
print(sys.path) # show where Python | ooks for nodul es
sys.exit() # prefix with 'sys'

If we know that we will be using the functions a lot and that they won't have the same names as
functions we have already imported or created then we can do:

fromsys inport * # inport all nanmes in sys
print(path) # can use wi thout specifying prefix 'sys'
exit()

The big danger with this approach is that two modul es could define functions with the same name and
then we could only use the second one that we import (becauseit will override thefirst). If we only
want to use a couple of items then it's safer to do it this way:

fromsys inport path, exit # inport the ones we need
exit() # use without specifying prefix 'sys'

Note that the names we specify do not have the parentheses following them. If that was the case we
would attempt to execute the functions rather than import them. The name of the functionis all that is
given.

Finally I'd like to show you a shorthand trick that saves some typing. If you have a module with avery
long name we can rename the module when we import it. Here is an example:

i mport Sinmpl eXMLRPCServer as s
s. Si npl eXMLRPCRequest Handl er ()

Notice that we told Python to consider s to be a shorthand for Si npl e XMLRPCSer ver . Then to use
the functions of the module we only need to type s. which is much shorter!

Other Python modules and what they contain

Y ou can import and use any of Python's modules in this way and that includes modules you create
yourself. Well see how to do that in a moment. First though, I'll give you a quick tour of some of
Python's standard modul es and some of what they offer:

Module name Description
Sys Allows interaction with the Python system:
* exit() - exit!
® argv - access command line arguments
® path - access the system modul e search path
®

psl - change the '>>>' Python prompt!

0S AI lows interaction with the operating system:

name - the current operating system, useful for portable programs
system - execute a system command

mkdir - create a directory

getcwd - find the current working directory

D:\DOC\HomePagell 2p\tutfunc.htm Page 91

Functions and Modules 12/04/2010

re Allows manipulation of strings with Unix style

regular expressions

® search - find pattern anywhere in string
match - find at beginning only

findall - find al occurences in a string

split - break into fields separated by pattern
sub,subn - string substitution

rat h Allows access to many mathematical functions:

® sin,cos etc - trigonometrical functions

* log,l0g10 - natural and decimal logarithms
* cdl,floor - celling and floor

® pi, e- natural constants

time time(and date) functions

time - get the current time (expressed in seconds)

gmtime - convert timein secsto UTC (GMT)

localtime - convert to local time instead

mktime - inverse of localtime

strftime - format atime string, e.g. YYYYMMDD or DDMMYYY
sleep - pause program for n seconds

random random number generators - useful for games programming!

* randint - generate random integer between inclusive end points
* sample - generate random sublist from a bigger list
® seed - reset the number generator key

These arejust the tip of theiceberg. There are literally dozens of modules provided with Python, and
as many again that you can download. (A couple of good sources are the Vaults of Parnassus and,
especially for more recent things, the Cheese shop.) SourceForge is also home to many Python
projects that have useful modules available. Google search is your friend, just include 'python’ in the
search string. Don;t forget to read the documentation to find out how to do Internet programming,
graphics, build databases etc. (I touch on some of these topics in the Applicatons section of this
tutorial)

The important thing to realize is that most programming languages have these basic functions e ther
built in or as part of their standard library. Always check the documentation before writing a function
- it may already be therel Which leads us nicdly into...

Defining our own functions

OK, so we know how to use the existing functions and modules, but how do we create a new
function? Simply by defining it. That is we write a statement which tells the interpreter that we are
defining ablock of code that it should execute, on demand, elsewherein our program.

VBScript first

So let's create afunction that can print out a multiplication table for us for any value that we provide
as an argument. In VBScript it looks like:

<script type="text/vbscript">
Sub Ti mes(N)

D:\DOC\HomePagell 2p\tutfunc.htm Page 92

Functions and Modules 12/04/2010

Dim |
For | =1 To 12
MsgBox | & " x " &N&" =" &I * N
Next
End Sub
</script>

We start with the keyword Sub (for Subroutine) and end the definition with End Sub, following the
normal VBScript block marker style. We provide alist of parameters enclosed in parentheses. The
code inside the defined block is just normal VBScript code with the exception that it treats the
parameters as if they were local variables. So in the example above the function is called Ti mes and it
takes a single parameter called N. It also defines alocal variablel . It then executes aloop to display
the N times table, using both Nand | as variables.

We can now call the new function likethis;

<script type="text/vbscript">

MsgBox "Here is the 7 tinmes table..."
Times 7

</script>

Note 1. We defined aparameter called N and passed an argument of 7 . The parameter (or |ocal
variable) N inside the function took the value 7 when we called it. We can define as many parameters
as we want in the function definition and the calling programs must provide values for each
parameter. Some programming languages allow you to define default values for a parameter so that if
no valueis provided the function assumes the default. WeEl seethisin Python later.

Note 2: We enclosed the parameter, N, in parentheses during function definition but, asisusua in
VBScript, we did not need to use parentheses when calling the function.

This function does not return avalue and is really what is called a procedure, which is, quite simply, a
function that doesn't return avalue! VBScript differentiates between functions and procedures by
having a different name for their definitions. Let's ook at a true VBScript function that returns the
multiplication table as asingle, long string:

<script type="text/vbscript">
Function TinmesTable (N)

Dml, S
S=N&" tines table" & vbNewLi ne
For | =1 to 12
S=S &I &" x" &N&" =" & I*N & vbNewLi ne
Next

TinesTable = S
End Function

Dm Ml tiplier

Mul tiplier = InputBox("Wich table would you |ike?")
MsgBox Ti nesTable (Ml tiplier)

</script>

It's very nearly identical to the Sub syntax, except we use the word Funct i on instead of Sub.
However, notice that you must assign the result to the function name inside the definition. The
function returns as a result whatever val ue the function name contains when it exits:

D:\DOC\HomePagell 2p\tutfunc.htm Page 93

Functions and Modules 12/04/2010

TinesTable = S
End Function

If you don't assign an explicit value the function will return a default value, usually zero or an empty
string.

Notice also that we had to put parentheses around the argument in the MsgBox line. That's because
MsgBox wouldn't otherwise have been able to work out whether Mul ti pl i er wasto be printed or
passed to its first argument which was Ti mesTabl e. By putting it in parentheses it is clear to the
interpreter that the value is an argument of Ti mesTabl e rather than of MsgBox.

Python too
In Python the Times function looks like:
def tinmes(n):
for i in range(1,13):
print("% x %d = %" % (i, n, i*n))

Andiscalled like;

print("Here is the 9 tines table...")
times(9)

Note that in Python procedures are not distinguished from functions and the same name def is used
to define both. The only differenceis that a function which returns avalue uses ar et ur n statement,
likethis:

def tinmesTabl e(n):
S - nn
for i in range(1,13):
s =s + "% x %d = %\n" %(i,n, n*i)
return s

Asyou seeit's very simple, just return the result using ar et ur n statement. (If you don't have an
explicit r et ur n statement Python automatically returns a default value called None which we usually
just ignore.)

We can then simply print the result of the function like so:

print(tinmesTable(7))

Although we haven't followed this advice throughout this tutorial, it is usually best to avoid putting
pri nt statementsinside functions. Instead, get themto r et ur n the result and print that from outside
the function. That makes your functions much more reusable, in awider variety of situations.

A Note About Parameters

Sometimes beginners find it hard to understand the role of parameters in function definitions. That is,
whether they should define afunction like this:

def f(x): # can use x within the function...

D:\DOC\HomePagell 2p\tutfunc.htm Page 94

Functions and Modules 12/04/2010

or

X = 42
def f(): # can use x within the function...

Thefirst example defines a parameter x and uses it inside the function, whereas the second directly
uses a variable defined outside the function. Since the second method (usually) works why bother
defining the parameter?

We have aready said that the parameters act as local variables, that is, ones which are only usable
inside the function. And we've said that the user of the function can pass in arguments to those
parameters. So the parameter list acts like a gateway for data moving between the main program and
the inside of the function.

The function can see some data outside the function (see the What's in a Name? topic for more on
that). However if we want the function to have maximum re-usability across many programs we want
to minimise its dependence on external data. Idedlly all the data that a function needs to work properly
should be passed into it viaits parameters.

If the function is defined inside amodulefileit is permissible to read data defined in that same module,
but even that will reduce the flexibility of your function. Of courseif alot of dataisinvolved it may
mean that you need a high number of parameters but we can reduce that to a manageable level by
using data collections: lists, tuples and dictionaries etc. Also, in Python and some other languages, we
can reduce the number of actual parameter values we need to provide by using something called
default arguments which we discuss in the next section.

Default Values

Y ou might recall that | mentioned the use of default values earlier? This refers to away of defining
function parameters that, if not passed as arguments explicitly, will take on a default value. One
sensible use for these would be in a function which returns the day of the week. If we call it with no
val ue we mean today, otherwise we provide a day number as an argument. Something like this:

i mport time

a day val ue of None => today
def dayOf Week(DayNum = None):
match day order to Python's return val ues
days = [' Mbnday', ' Tuesday',
' Wednesday' , ' Thur sday’ ,
"Friday', 'Saturday', 'Sunday']

check for the default value
i f DayNum == None:
theTime = tine.localtime(tine.tinme())
DayNum = t heTi ne[6] # extract the day val ue
return days[DayNumnj

Note: We only need to use the time modul e if the default parameter value is involved, therefore we
could defer the import operation until we need it. This would provide a slight performance
improvement if we never had to use the default val ue feature of the function, but it is so small, and
breaks the convention of importing at the top, that the gain isn't worth the extra confusion.

Now we can call this with:

D:\DOC\HomePagell 2p\tutfunc.htm Page 95

Functions and Modules 12/04/2010

print("Today is: %" % dayOfWeek())

renmenber that in conputer speak we start fromO

and in this case we assume the first day is Mnday.
print("The third day is %" % dayOf Week(2))

Counting Words

Another example of a function which returns a value might be one which counts the words in a string.
Y ou could use that to calculate the words in afile by adding the totals for each line together.

The code for that might look something likethis:

def numaords(s):
s = s.strip() enove "excess" characters
i # list with each elenent a word
i #

nunber of elenents in list is the nunber of words in s

#r
list = s.split()
return len(list)

That defines the function, making use of some of the built-in string methods which we mentioned in
passing in the Raw Materials chapter.

Wewould useit by doing something like this:

for line in file:
total = total + numwrds(line) # accumul ate totals for each line
print("File had % words" %total)

Now if you tried typing that in, you'll know that it didn't work. Sorry! What |'ve doneis a common
design technique which is to sketch out how | think the code should look but not bothered to use the
absolutely correct code. This is sometimes known as Pseudo Code or in a slightly more formal style
Program Description Language (PDL).

One other thing that thisillustratesis why it is better to return a value from a function and print the
result outside the function rather than to print the value inside the function. If our function had printed
the length rather than returning it we could not have used it to count the total words in the file, we
would simply have gotten along list of the length of each line. By returning the value we can choose
to use the value that way or, as we did here, simply storeit in avariable for further processing - in this
case taking the total count. It is avery important design point to separate the display of your data (via
print) from the processing of the data (in the function). A further advantage is that if we print the
output it will only be useful in a command line environment, but if we return the value we can display
it in aweb page or a GUI too. Separating processing from presentation is very powerful, try to always
return val ues from functions rather than printing them. The exception to this rule is where you create
afunction specifically to print out some data, in which case try to make this obvious by using the
word print or display in the function name.

Once we've had a closer ook at file and string handling, alittle later in the course, well come back to
this example and write it for real.

JavaScript Functions

We can aso create functions in JavaScript, of course, and we do so using thef unct i on command,
like so:

<script type="text/javascript">

D:\DOC\HomePagell 2p\tutfunc.htm Page 96

Functions and Modules 12/04/2010
var i, val ues;

function tinmes(m {
var results = new Array();
for (i =1; i <= 12; i++) {
results[i] =i * m

}

return results;

/1 Use the function
values = tinmes(8);

for (i=1;i<=12;i++){
docunent.wite(values[i] + "
");

</script>

In this case the function doesn't help much, but hopefully you can see that the basic structureis very
similar to the Python and VB Script function definitions. We'll see more complex JavaScript functions
as we go through the tutor. In particular JavaScript uses functions to define objects as well as
functions, which sounds confusing, and indeed can be!

Before we move on though, now is a good time to look back at the JavaScript examplein Talking to
the User, where we used JavaScript to read input from a web form. The code looked like this:

<script type="text/javascript">
function nyProgram()({
alert("We got a value of " + docunent.entry. data. val ue);

</script>

<form nanme="entry' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange='nyProgran()'>

</fornp

Looking at that we can now see that what we did was define a JavaScript function called
my Pr ogr amand then tell the formto call that function when the | nput field changed. Well explain
this further in the topic on Event Driven programming

A Word of Caution

Functions are very powerful because they allow us to extend the language, they also give us the
power to change the language by defining a new meaning for an existing function (some languages
don't allow you to do this), but thisis usually a bad idea unless carefully controlled (well see away to
control it in aminute). By changing the behavior of a standard language function your code can
become very difficult for other people (or even you, later on) to read, since they expect the function
to do one thing but you have redefined it to do another. Thus it is good practice not to change the
basic behavior of built in functions.

One way to get round this limitation of not changing built in behavior but still using a meaningful
name for our functions is to put the functions inside either an object or a module which providesits
own local context. WEII ook at the object approach in the OOP topic alittle later but for now let's
see how we go about creating our own modul es.

D:\DOC\HomePagell 2p\tutfunc.htm Page 97

Functions and Modules 12/04/2010

Creating our own modules

So far we have seen how to create our own functions and call these from other parts of our program.
That's good because it can save us alot of typing and, more importantly, makes our programs easi er
to understand because we can forget about some of the detail s after we create the function that hides
them. (This principle of wrapping up the complex bits of a program inside functionsis called

information hiding for fairly obvious reasons.) But how can we use these functions in other
programs? The answer is that we create a module.

Python Modules

A module in Python is nothing special. It's just aplain text file full of Python program statements.
Usually these statements are function definitions. Thus when we type:

i mport sys

we tell the Python interpreter to read that modul e, executing the code contained in it and making the
names that it generated availableto usin our file. It is amost like making a copy the contents of

sys. py into our program, like a cut n' paste operation. (it's not really like that but the concept is
similar. Infact sys isaspecial kind of module that doesn't actually have asys. py file, but we will
ignore that for now!). In fact in some programming languages (noteably C and C++) the translator
literally does sometimes copy module files into the current program as required.

So to recap, we create a modul e by creating a Python file containing the functions we want to reuse in
other programs. Then we just import our module exactly like we do the standard modules. Easy eh?
Let'sdoit.

Copy the function below into afile by itsef and save the file with the namet i mest ab. py. You can
do thisusing IDLE or Notepad or any other editor that saves plain text files. Do not use a Word
Processing program since they tend to insert all sorts of fancy formatting codes that Python will not
understand.

def print_table(nultiplier):
print("--- Printing the % tinmes table ---" % multiplier)
for n in range(1,13):
print("% x %d = %" % (n, nmultiplier, n*nultiplier))

Now at the Python prompt type:

>>> jnport tinestab
>>> timestab. print_table(12)

Heh presto! You've created a module, imported it and used the function defined insideit.

Important Note: If you didn't start Python from the same directory that you stored the

ti mest ab. py filethen Python might not have been able to find the file and reported an error. If so
then you can create an environment variable called PY THONPATH that holds alist of valid
directories to search for modules (in addition to the standard modules supplied with Python). | find it
convenient to define afolder in my PY THONPATH and store all my reusable modul e files in that
folders. Obviously you should test your modul es thoroughly before moving them into that folder.

D:\DOC\HomePagell 2p\tutfunc.htm Page 98

Functions and Modules 12/04/2010

Creating environment variablesis a platform specific operation which | assume you either know how
to do or can find out! For example Windows XP users can use the Sart->Help & Support facility to
search for Environment Variables and see how to create them.

Modulesin VBScript and JavaScript

What about VBScript? That's more complex.... In VBScript itsef and other older varieties thereis no
real module concept. Instead, VBScript relies on the creation of objects to reuse code between
projects. We look at this later in the tutorial. Meantime you will have to manually cut n' paste from
previous projects into your current one using your text editor.

Note: VBScript's big brother Visual Basic does have a modul e concept and you can load a module
viathe Integrated Development Environment (IDE) Fi | e| Open Modul e. .. menu. Therearea
few restrictions as to what kind of things you can do inside a VB module but since we're not using
Visua Basic on this course | won't go into that any further. Microsoft make a free version of the
latest VB Express version available athough you have to register with them before you can useit. If
you fed like experimenting this page has more details.

Like VBScript, JavaScript does not offer any direct mechanism for reuse of code files as modules.
However there are some exceptions to these in specialised environments such as where JavaScript is
used outside of aweb page (See the Windows Script Host box below for an example).

Windows Script Host

So far we have looked at VB Script and JavaScript as languages for programming within aweb
browser. That imposes some restrictions including the lack of away to include a module of reusable
code. Thereis another way to use VB Script (and JavaScript) within a Windows environment, namely
Windows Script Host or WSH. WSH is Microsoft's technol ogy to enable users to program their PCs
in the same way that DOS programmers used Batch files. WSH provides mechanisms for reading
files and the registry, accessing networked PCs and Printers etc.

In addition WSH v2 includes the ability to include another WSH file and thus provides reusable
modules. It works like this, first create a module file called SomeModul e. vbs containing:

Functi on Subtract Two(N)
SubtractTwo = N - 2
End function

Now create a WSH script file called, say, t est Modul e. wsf , likethis:

<?xm version="1.0" encodi ng="UTF-8"?>

<j ob>
<script type="text/vbscript" src="SoneMdul e.vbs" />
<script type="text/vbscript">
Di mval ue, result
WEcri pt. Echo "Type a nunber”
val ue = W5cri pt. Stdl n. ReadLi ne
result = Subtract Two(Cl nt(val ue))

WEcri pt. Echo "The result was " &anp; CStr(result)
</script>

D:\DOC\HomePagell 2p\tutfunc.htm Page 99

Functions and Modules 12/04/2010
</ j ob>

You can run it under Windows by starting a DOS session and typing:

C:\> cscript testMdule. wsf

The structure of the .wsf fileis XML and the program livesinside a pair of <j ob></ j ob> tags,
rather like our <HTML></ HTM_.> tags. Inside the first script tag references a module file called
SonmeMbdul e. vbs and the second script tag contains our program which accesses

Subt r act Two within the SonmeMbdul e. vbs file. The. vbs filejust contains regular VB Script code
with no XML or HTML tags whatsoever.

Notice that to concatenate the strings for the Wscr i pt . Echo statement we have to escape the
ampersand (with &anp;) because the statement is part of an XML file! Notice too, that we use the
WBcr i pt . Stdi n to read user input, you might recall the sidebar in the User Input topic that
discussed stdin and stdout?

This technique works with JavaScript too, or more correctly with Microsoft's version of JavaScript
called JScript, simply by changing thet ype= attribute. In fact you can even mix languagesin WSH
by importing a module written in JavaScript and using it in VBScript code, or vice-versal To prove
the point, hereis the equivalent WSH script using JavaScript to access the VB Script module:

<?xm version="1.0" encodi ng="UTF-8"?>

<j ob>
<script type="text/vbscript" src="SoneMdul e.vbs" />
<script type="text/javascript">
var val ue, result;
WEcri pt. Echo(" Type a nunber");
val ue = W5cri pt. Stdl n. ReadLi ne();
result = Subtract Two(parselnt(val ue));

W5cri pt. Echo("The result was " + result);
</script>
</ j ob>

Y ou can see how closdly related the two versions are, most of the clever stuff is actually done
through the WScript objects and apart from a few extra parentheses the scripts are very much alike.

| won't use WSH very often in this tutor but occasionally we will delveinto it when it offers
capabilitiesthat | cannot demonstrate using the more restricted web browser environment. For
exampl e the next topic will use WSH to show how we can manipulate files using VBScript and
JavaScript. There are afew books available on WSH if you are interested, and Microsoft have alarge
section of their web site dedicated to it, complete with sample programs and devel opment tools etc.
You'l find it here: http://msdn.mi crosoft.convscripting/

Next we'll take alook at files and text handling and then, as promised, revisit the business of counting
words in afile. In fact we're eventually going to create a module of text handling functions for our
convenience.

D:\DOC\HomePagell 2p\tutfunc.htm Page 100

Functions and Modules 12/04/2010

| Things to remember

Functions are a form of module

Functions return val ues, procedures don't

Python modules normally consist of function definitionsin afile
Cresate new functions with the def keyword in Python

Use Sub or Functi on in VBScript and f unct i on in JavaScript

Previous Contents Next

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePagell 2p\tutfunc.htm Page 101

FileHandling 12/04/2010

Handling Files

What will we cover?

How to open afile

How to read and write to an open file
How to close afile.

Building an address book

Handling binary data files

Random Access to file data

Handling files often poses problems for beginners athough the reason for this puzzles me slightly.
Filesin a programming sense are really not very different from files that you usein aword processor
or other application: you open them, do some work and then close them again.

The biggest differences are that in a program you access thefile sequentially, that is, you read one
line at atime starting at the beginning. In practice the word processor often does the same, it just
holds the entire file in memory while you work on it and then writes it all back out when you closeiit.
The other differenceis that, when programming, you normally open thefile as read only or write only.
Y ou can write by creating a new file from scratch (or overwriting an existing one) or by

appending to an existing one.

One other thing you can do while processing afileis that you can go back to the beginning.

Files- Input and Output

Let's seethat in practice. Wewill assume that afile exists called nenu. t xt and that it holds alist of
medls:

spam & eggs
spam & chi ps
spam & spam

Now we will write a program to read the file and display the output - like the 'cat’ command in Unix
or the 'type' command in DOS.

First open the file to read(r)
inp = open("nenu.txt","r")
read the file line by line
for line in inp:
print(line)
Now cl ose it again
i np. cl ose()

Note 1: open() takestwo arguments. Thefirst is the filename (which may be passed as a variable or
alitera string, as we did here). The second is the mode. The mode determines whether we are
opening thefile for reading(r) or writing(w), and also whether it's for text or binary usage - by adding
a'b' tothe'r' or 'w', asin: open(fn, "rb")

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 102

FileHandling 12/04/2010

Note 2: Weread and close the file using functions preceded by the file variable. This notation is
known as method invocation and is another example of Object Orientation. Don't worry about it for
now, except to redlize that it's related in some ways to modules. You can, if it helps, think of afile
variable as being a reference to a modul e contai ning functions that operate on files and which we
automatically import every time we create afile type variable.

Note 3: Weclosethefileat theend with thecl ose() method. In Python, files are automatically
closed at the end of the program but it is good practice to get into the habit of closing your files
explicitly. Why? Wdll, the operating system may not write the data out to thefile until it is closed (this
can boost performance). What this meansis that if the program exits unexpectedly there is a danger
that your precious data may not have been written to the file! So the moral is: once you finish writing
to afile closeit.

Note 4: We have not specified the full path to the filein the code above so the file will be treated as
being in the current folder. However we can pass a full path nameto open() instead of just thefile
name. Thereis awrinkle when using Windows however, because the\ character used to separate
folders in a Windows path has a special meaning inside a Python string. So, when specifying pathsin
Python it is best to always usethe/ character instead and that

will work on any Operating System including Windows.

Now, consider how you could cope with long files. You couldn't display all of thefile on asingle
screen so we need to pause after each screenful of text. You might useal i ne_count variablewhich
isincremented for each line and then tested to see whether it is equal to 25 (for a 25 line screen). If
SO, you request the user to press akey (enter, say) before resetting | i ne_count to zero and
continuing. You might liketo try that as an exercise...

Another way of reading afileisto use awhileloop and a method of the file object called

readl i ne() . The advantage of thisis that we can stop processing the file as soon as we find the data
we need, this can greatly speed things up if processing long files. However it is alittle bit more
complex, so lets look at the previous example using a while loop:

First open the file to read(r)
inp = open("menu.txt","r")
read the file and print each line
line = inp.readline()
while |ine:
print(line)
line = inp.readline()
Now close it again
i np. cl ose()

Note: we read the first line before entering the loop so that the test condition would pass. Thereafter
we printed each line, read the next and so long as it was not empty went around again. Finally, after
exiting the while loop we closed thefile. If we wanted to stop at a certain point in the file we would
have introduced a branch condition inside the while loop and if it detected the stop condition we
simply set the line value to an empty string (* ') so that the loop will terminate (Recall that an empty
valueistreated as a Fal se boolean value in Python tests).

Redlly that's dl thereistoit. You open thefile, read it in and manipulate it any way you want to.
When you're finished you close the file. However thereis one little niggle you may have noticed in the
previous example: the lines read from the file have a nemMine character at the end, so you wind up
with blank linesusing pri nt () (which addsits own newline). To avoid that Python provides a string

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 103

FileHandling 12/04/2010

method called st ri p() which will remove whitespace, or non-printable characters, from both ends of
astring. (It has cousins which can strip oneend only calledr st ri p and | st ri p too) If we substitute
the print() line above with:

print(line.rstrip()) #only strip right hand end
Everything should now work just fine.

To create a'copy’ command in Python, we simply open a new file in write mode and write the lines to
that fileinstead of printing them. Like this:

Create the equival ent of: COPY MENU. TXT MENU. BAK

First open the files to read(r) and wite(w)
inp = open("menu.txt","r")
outp = open("nenu. bak", "w")

read file, copying each line to newfile
for line in inp:
outp.wite(line)

print("1 file copied...")

Now cl ose the files
i np. cl ose()
out p. cl ose()

Did you noticethat | added apri nt () statement at the end, just to reassure the user that something
actually happened? This kind of user feedback is usually a good idea.

Because we wrote out the same| i ne that we read in there was no problems with newline characters
here. But if we had been writing out strings which we created, or which we had st ri pped earlier we
would have needed to add a newline to the end of the output string, like this:

outp.wite(line + '\n") #\n is a newine

Let'slook at how we might incorporate that into our copy program. Instead of simply copying the
menu we will add todays date to the top. That way we can easily generate a daily menu from the
easily modified text file of meals. All we need to do iswrite out a couple of lines at the top of the new
file before copying the menu.txt file, likethis:

i mport time

Create daily nenu based on MENU. TXT

First open the files to read(r) and wite(w)
inp = open("menu.txt","r")

outp = open("nmenu.prn”,"w")

Create todays date string
today = tine.localtinme(time.tine())
theDate = tine.strftine("% %8 %", today)

Add Banner text and a bl ank |ine
outp.wite("Menu for %\n\n" %t heDate)

copy each line of nmenu.txt to newfile

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 104

FileHandling 12/04/2010

for line in inp:
outp.write(line)

print("Menu created for %..." %theDate)

Now cl ose the files
i np. cl ose()
out p. cl ose()

Note that we use thet i me moduleto get todays date (ti me. ti ne()) and convert it into a tuple of
values(tinme.localtime()) whicharethenusedbytine.strftinme() (check the
documentation for time.strftime to see what elseit can do) to produce a string which, when inserted
into atitle message using string formatting, looks like:

Menu for Sunday Septenber 19

Spam & Eggs
Spam &. . .

Although we added two "\n' characters at the end thereis only one blank line printed, that's because
one of themis the newline at the end of thetitleitself. Managing the creation and removal of newline
characters is one of the more irritating aspects of handling text files.

Some Operating Systems Gotchas

Operating systems handlefiles in different ways. This introduces some niggles into our programs if
we want them to work on multiple operating systems. There are two niggles in particular which can
catch people out and well 1ook at them here:

Newlines

The whole subject of newlines and text files is a murky area of non standard i mplementation by
different operating systems. These differences have their roots in the early days of data

communi cations and the control of mechanical teleprinters. Basically there are 3 different ways to
indicate a new line:

1. A Carriage Return (CR) character ('\r')
2. A LineFeed (LF) character ("\n')
3. A CR/LF pair ('\r\n).

All three techniques are used in different operating systems. MS DOS (and therefore Windows) uses
method 3. Unix (including Linux) uses method 2. Applein its original MacOS used method 1, but
now uses method 2 since MacOS X isreally avariant of Unix.

So how can the poor programmer cope with this multiplicity of line endings? In many languages she
just has to do lots of tests and take different action per OS. In more modern languages, including
Python, the language provides facilities for dealing with the mess for you. In the case of Python the
assistance comes in the form of the os module which defines avariable called | i nesep which is set

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 105

FileHandling 12/04/2010

to whatever the newline character is on the current operating system. This makes adding newlines
easy, andrstri p() takesaccount of the OS when it does its work of removing them, so really the
simple way to stay sane, so far as newlines are concerned is: always user stri p() to remove
newlines from lines read from afile and always add os. | i nesep to strings being written to afile.

That still leaves the awkward situation where afile is created on one OS and then processed on
another, incompatible, OS and sadly, there isn't much we can do about that except to compare the
end of thelinewith os. | i nesep to determine what the differenceis.

Specifying Paths

Thisis more of an issue for Windows users than others although MacOS 9 users may bump into it
occasionally too. As above each OS specifies paths to files using different characters to separate the
drives, folders and files. The generic solution for thisis again to use the os module which provides
the os. sep variable to define the current platforms path separator character. In practice you won't
need to use this very often since the path will likely be different for every machine anyway! So
instead you will just enter the full path directly in a string, possibly once for each OS you are
running on. But there is one big gotcha hiding in wait for Windows users...

Y ou saw in the previous section that python treats the string ' \ n* as anewline character. That is it
takes two characters and treats them as one. In fact there are a whol e range of these special
sequences beginning with back slash (\) including:

\n - A newline

\r - A carriagereturn

\'t - A horizontal tab

\v - A vertical tab (sometimes means a new page)

\ b - A backspace

\ Onn - Any arbitrary octal character code. e.g. the code\ 033 is the escape character (ESC)

This meansthat if we have adatafilecalledt est . dat and want to open it in Python by specifying
afull Windows path we might expect this to work:

>>> f = open('C \test.dat')

But Python will seethe\t pair as atab character and complain it cannot find afile called:
C est . dat .
So how do we get round this inconvenience? There are three sol utions:

1. putan'rinfront of the string. This tells Python to ignore any back slashes and treet it as a
"raw" sting.

>>> print "Hello\nWrld"
>>> print r"Hello\nWrl|d"

2. Useforward slashes (/) instead of backslashes, Python and Windows will between them sort
out the path for you. This has the added advantage of making your code portable to other
operating systems too.

3. Useadouble backslash(\ \) since a double backslash character is seen by Python as asingle
backd ash!

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 106

FileHandling 12/04/2010

Thus any of the following will open our datafile correctly:

>>> f = open(r'C\test.dat")
>>> f = open('C /test.dat')
>>> f = open('C \\test.dat")

Appending data

Onefinal twist in file processing is that you might want to append data to the end of an existing file.
One way to do that would be to open the file for input, read the datainto alist, append the data to the
list and then write the whole list out to a new version of the old file. If thefileis short that's not a
problem but if the fileis very large, maybe over 100Mb, then you could run out of memory to hold the
list. Fortunately there's another mode" a" that we can pass to open() which allows us to append
directly to an existing file just by writing. Even better, if the file doesn't exist it will open anew file
just asif you'd specified " w' .

As an example, |et's assume we have a log file that we use for capturing error messages. We don't
want to del ete the existing messages so we choose to append the error, likethis:

def | ogError(nsg):
err = open("Errors.log","a")
err.wite(nsg)
err.close()

In the real world we would probably want to limit the size of the filein some way. A common
techniqueis to create a filename based on the date, thus when the date changes we automatically
create anew fileand it is easy for the maintainers of the system to find the errors for a particular day
and to archive away old error filesif they are not needed. (Remember, from the menu example above,
that thet i me module can be used to find out the current date.)

The Address Book Revisited

Y ou remember the address book program we introduced during the Raw Materials topic and then
expanded in the Talking to the User topic? Let's start to makeit really useful by saving it to afile and,
of course, reading thefile at startup. Well do this by writing some functions. So in this example we
pull together several of the strands that we've covered in the | ast few topics.

The basic design will require afunction to read the file at startup, another to write the file at the end
of the program. We will also create a function to present the user with a menu of options and a
separate function for each menu selection. The menu will allow the user to:

¢ Add an entry to the address book
¢ Remove an entry from the book
* Find and display an existing entry
* Quit the program

L oading the Address Book
i mport os
filename = "addbook. dat"

def readBook(book):
if os.path.exists(filenane):

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 107

FileHandling 12/04/2010

store = open(filenane,'r")

for line in store:
nane = line.rstrip()
entry = store.next().rstrip()
book[nane] = entry

store. close()

Note 1: Weimport the os module which we use to check that the file path actually exists before
opening thefile.

Note 2: We defined the filename as a module level variable so we can useit both in loading and
saving the data.

Note 3: Weuserstri p() toremovethe new-line character from the end of the line. Also notice the
next () operation to fetch the next line from the file within the loop. This effectively means we are
reading two lines at a time as we progress through the loop.

Saving the Address Book

def saveBook(book):
store = open(filenane, 'wW)
for name,entry in book.itens():
store.wite(name + '\n")
store.wite(entry + '\n')
store. close()

Notice we need to add a newline character (' \ n') when we write the data. Also note that we write
two lines for each entry, this mirrors the fact that we processed two lines when reading the file.

Getting User Input

def get Choi ce(nmenu, |ength):
print(menu)
prompt = "Select a choice(1l-%): " %length
choice = int(input(pronmpt))
return choice

Note: We receive alength parameter which tells us how many menu entries there are. This allows us
to create a prompt that specifies the correct number range.

Adding an Entry

def addEntry(book):
name = input("Enter a nane: ")
entry = input("Enter street, town and phone nunber: ")
book[nane] = entry

Removing an entry

def renoveEntry(book):
name = input("Enter a nane: ")
del (book[nane])

Finding an entry

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 108

FileHandling 12/04/2010

def findEntry(book):
name = input("Enter a nane: ")
if nane in book:
print(nanme, book[nane])
else: print("Sorry, no entry for: ", name)

Quitting the program

Actually I won't write a separate function for this, instead I'll make the quit option the test in my menu
whi | e loop. So the main program will look like this:

def main():
t heMenu = """
1) Add Entry
2) Renove Entry
3) Find Entry
4) Quit and save

t heBook = {}
r eadBook(t heBook)
choi ce = get Choi ce(t heMenu, 4)
whil e choice !'= 4:
if choice == 1:
addEnt r y(t heBook)
elif choice == 2:
renoveEnt ry(t heBook)
elif choice == 3:
fi ndEntry(theBook)
el se: print("lnvalid choice, try again")
choi ce = get Choi ce(t heMenu, 4)
saveBook(t heBook)

Now the only thing left to do is call themai n() function when the programis run, and to do that we
use a bit of Python magic like this:

if _name__ =="_min__
mai n()

This mysterious bit of code alows us to use any python fileasamodule by i npor tingit, or asa
program by running it. The differenceis that when the program isimported, theinternal variable
__name__ is set to the module name but when thefileisrun, thevalueof _ _nanme_ issetto

" __main__".Sneaky, eh?

Now if you type all that code into a new text file and save it as addressbook.py, you should be ableto
run it from an OS prompt by typing:

C.\ PRQJECTS> pyt hon addr essbook. py

Or just double click the file in Windows Explorer and it should start up in its own DOS window, and
the window will close when you select the quit option.

Or, in Linux:

$ python addr essbook. py

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 109

FileHandling 12/04/2010

This 60 odd line program s typical of the sort of thing you can start writing for yourself. Therearea
couple of things we can do to improve it which I'll cover in the next section, but even asit stands it's a
reasonably useful little tool.

VBScript and JavaScript

Neither VBScript nor JavaScript have native file handling capabilities. Thisis a security feature to
ensure nobody can read your files when you innocently load aweb page, but it does restrict their
general usefulness. However, as we saw with reusable modules there is away to do it using Windows
Script Host. WSH provides aFi | eSyst emobject which allows any WSH language to read files. We
will look at a JavaScript example in detail then show similar code in VBScript for comparison, but as
before the key e ements will really be calls to the WScript objects.

Before we can look at the codein detail it's worth taking time to describe the Fi | eSyst emObject
Model. An Object Model is a set of related objects which can be used by the programmer. The WSH
Fi | eSyst emobject modd consists of the FSO object, a number of Fi | e objects, including the

Text Fi | e object which wewill use. There are also some hel per objects, most notable of which is, for
our purposes, the Text St r eamobject. Basically we will create an instance of the FSO object, then
useit to create our Text Fi | e objects and from these in turn create Text St r eamobjects to which
we can read or write text. The Text St r eamobjects themsel ves are what we actually read/write from
thefiles.

Typethefollowing codeinto afilecalledtest Fil es. j s andrunit usingcscri pt asdescribedin
the earlier introduction to WSH.

Opening afile

To open afilein WSH we create an FSO object then create a TextFile object from that:

var fileNane, fso, txtFile, outFile, |ine;

/[l Get file nane

fso = new ActiveXObject("Scripting.FileSystenbject");
WEcri pt. Echo("What file nanme? ");

fileName = WBcript. Stdln. Readline();

/!l open inFile to read, outFile to wite

inFile = fso. OpenTextFile(fileNanme, 1); // node 1 = Read
fileName = fil eNane + ".BAK"

outFile = fso.CreateTextFil e(fil eName);

Reading and Writing afile

/! 1oop over file till it reaches the end
ile (!'inFile. At EndOF Stream) {
line = inFile.ReadLi ne();
WEcri pt. Echo(l i ne);
outFile.WiteLine(line);
}
Closing files

inFile.close();
outFile.close();

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 110

FileHandling 12/04/2010
And in VBScript

Savethefollowing ast est FI | es. ws and then run it using:

cscript testfiles.ws

Or dternatively, put the bit between thescri pt tagsinto afilecaledt est Fi | e. vbs and run that
instead. The. ws format allows you to mix JavaScript and VBScript code in the same file by simply
using multiplescri pt tags, should you want to...

<?xm version="1.0"7?>

<j ob>
<script type="text/vbscript">
Dmfso, inFile, outFile, inFileName, outFileNane
Set fso = CreateObject("Scripting.FileSystenthject")

W5cri pt. Echo "Type a filenanme to backup”
i nFi | eNanme = W5cri pt. Stdl n. ReadLi ne
out Fi l eNanme = inFil eNane &anp; ".BAK"

open the files
Set inFile = fso. OpenTextFil e(inFil eNanme, 1)
Set outFile = fso.CreateTextFil e(outFil eNane)

read the file and wite to the backup copy
VWil e not inFile. At EndCF Stream
line = inFile.ReadLine
outFile.WiteLine(line)
Wend

close both files
i nFile.C ose
outFil e. C ose

WEcri pt. Echo inFil eNane &anp; " backed up to " &anp; outFil eNane
</script>
</ j ob>

Handling Non-Text Files

Handling text is one of the most common things that programmers do, but sometimes we need to
process raw binary datatoo. Thisis very rarely donein VBScript or JavaScript so | will only be
covering how Python does it.

Opening and Closing Binary Files

The key difference between text files and binary filesis that text files are composed of octets, or bytes,
of binary data whereby each byte represents a character and the end of thefileis marked by a specia
byte pattern, known generically as end of file, or eof. A binary file contains arbitrary binary data and
thus no specific value can be used to identify end of file, thus a different mode of operation is required
to read thesefiles. The end result of thisis that when we open a binary file in Python (or indeed any
other language) we must specify that it is being opened in binary mode or risk the data being read
being truncated at thefirst eof character that Python finds in the data. The way we do this in Python
isto add a'b' to the mode parameter, likethis:

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 111

FileHandling 12/04/2010
binfile = file("aBinaryFile.bin","rb")

The only difference from opening atext fileis the mode value of " r b" . 'Y ou can use any of the other
modes too, simply add a'b": " wb" to write, " ab" to append.

Closing abinary fileis no different to atext file, smply call thecl ose() method of the open file
object:
binfile.close()

Because the file was opened in binary mode there is no need to give Python any extra information, it
knows how to close the file correctly.

Data Representation and Storage

Before we discuss how to access the data within a binary file we need to consider how datais
represented and stored on a computer. All datais stored as a sequence of binary digits, or bits.
These bits are grouped into sets of 8 or 16 called bytes or words respectively. (A group of 4 is
sometimes called anibble!) A byte can be any one of 256 different bit patterns and these are given
the values 0-255.

The information we manipulate in our programs, strings, numbers etc must all be converted into
sequences of bytes. Thus the characters that we usein strings are each allocated a particular byte
pattern. There were originally several such encodings, but the most common is the ASCII (American
Standard Coding for Information Interchange). Unfortunately pure ASCII only caters for 128 values
which is not enough for non English languages. A new encoding standard known as Unicode has
been produced, which can use data words instead of bytes to represent characters, and allows for
over 65000 characters. (A more recent increase in spec has raised that to over amillion!). These
characters can then be encoded into a more compact data stream. One of the most common
encodingsis called UTF-8 and it corresponds closealy to the earlier ASCII coding such that every
valid ASCII fileisavalid UTF-8 file, although not necessarily the other way around. Unicode
provides a number of different encodings each of which defines which bytes represent each Unicode
numerical value (or code point in Unicode terms). If you are thinking that this is complicated you
areright! It isthe cost of building agloba computer network that must work in lots of different
languages. The good news if you are an English speaker is that for the most part you can ignoreit!
The exception is when reading data from a binary file, when you do need to know which encoding
has been used to interpret the binary data successfully.

Python fully supports Unicode text and we can specify which particular encoding we want to apply
by inserting a special comment at the top of a sourcefile. A string of encoded charactersis
considered to be a byte string and has the type byt es whereas a string of unencoded text has the

type st r. The default encoding is usually UTF-8 (but, in theory at least, could be different!). | will
not be covering the use of non UTF-8 encodings in this tutorial but there is an extensive
"How-To" document on the Python web site.

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 112

FileHandling 12/04/2010

The key thing to realize in all of thisis that a binary stream of encoded unicode text is treasted as a
string of bytes and Python provides functions to convert between byt es and st r values.

In the same way numbers need to be converted to binary codings too. For small integersit is simple
enough to use the byte values directly, but for numbers larger than 255 (or negative numbers, or
fractions) some additional work needs to be done. Over time various standard codings have
emerged for numerical data and most programming languages and operating systems use these. For
example, the American Institute of Electrical and Electronic Engineering (IEEE) have defined a
number of codings for floating point numbers.

The point of all of thisis that when we read a binary file we have to interpret the raw bit patterns
into the correct type of data for our program. It is perfectly possibleto interpret a stream of bytes
that were originally written as a character string as a set of floating point numbers. Or course the
original meaning will have been lost but the bit patterns could represent either. So when we read
binary data it is extremely important that we convert it into the correct data type.

The Struct Module

To encode/decode binary data Python provides a module called st r uct , short for structure.

st ruct works very much like the format strings we have been using to print mixed data. We provide
a string representing the data we are reading and apply it to the byte stream that we are trying to
interpret. We can also use struct to convert a set of datato a byte stream for writing, either to a
binary file (or even a communications line!).

There are many different conversion format codes but we will only use the integer and string codes
here. (You can look up the others on the Python documentation for the st ruct module.) The
codes for integer and string arei , and s respectively. The st r uct format strings consist of sequences
of codes with numbers pre-pended to indicate how many of the items we need. The exception is the

s code where the prepended number means the length of the string. For example 4s means a string of
four characters (note 4 characters not 4 strings!).

Let's assume we wanted to write the address details, from our Address Book program above, as
binary data with the street number as an integer and therest as a string (Thisis abad ideain practice
since street "numbers’ sometimes include letters!). The format string would look like:

'i134s' # assuming 34 characters in the address!

To cope with multiple address lengths we could write a function to create the binary string like this:

def fornmat Addr ess(address):
split breaks a string into a list of 'words'

fields = address.split()

nunber = int(fields[0])

rest ="' '".join(fields[1:])

format = "i%s" %l en(rest) #create the format string

return struct. pack(format, nunber, rest)

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 113

FileHandling 12/04/2010

So we used a string method - spl i t () - (more on themin the next topic!) to split the address string
into its parts, extract the first one as the number and then use another string method, j oi n tojoin the
remaining fields back together separated by spaces. The length of that string is the number we need in
thest ruct format string so we usethel en() function in conjunction with a normal format string to
build ast ruct format string. Phew!

f or mat Addr ess() will return a sequence of bytes containing the binary representation of our
address. Now that we have our binary data let's see how we can write that to a binary file and then
read it back again.

Reading & Writing Using Struct

Let's create a binary file containing a single address line using the f or mat Addr ess() function
defined above. We need to open the file for writing in' wb' mode, encode the data, writeit to thefile
and then closethefile. Let'stry it:

i mport struct

f =file(' address.bin'," ' wh')

data = "10 Sone St, Anytown, 0171 234 8765"

bi ndata = format Address(dat a)

print("Binary data before saving: ", repr(bindata))
f.wite(bindata)

f.close()

Y ou can check that the datais indeed in binary format by opening addr ess. bi n in notepad. The
characters will be readable but the number will not look like 10! In fact it has disappeared! If you have
an editor which can read binary files (e.g vim or emacs) and use that to open addr ess. bi n you will
see that the start of the file has 4 bytes. Thefirst of these may |ook like a newline character and the
rest are zeros. Now it turns out that, just coincidentally, the numerical value of newlineis 10! Aswe
can show using Python:

>>> ord('\n")

Theord() function simply returns the numeric value of a given character. So thefirst 4 bytes are
10, 0, 0, 0 indecimal (or 0xA, 0x0, 0x0, 0x0 in hexadecimal, the system usually used to display
binary data - sinceit is much more concise than using pure binary).

On a 32 bit computer an integer takes up 4 bytes. So theinteger value '10" has been converted by the
st ruct moduleinto the 4 byte sequence 10, 0, 0, 0. Now onintel micro-processors the byte
sequence is to put the least significant byte first so that, reading it in reverse, gives us the true
"binary" value: 0, 0, 0, 10.

Which is theinteger value 10 expressed as 4 decimal bytes. The rest of the datais basically the
original text string and so appearsin its normal character format.

Be sure not to save the file from within Notepad since although Notepad can load some binary files it
cannot save them as binary, it will try to convert the binary to text and can corrupt the datain the
process! It isworth pointing out here that the file extension . bi n that we used is purely for our
convenience, it has no bearing on whether thefileis binary or text format. Some Operating Systems
use the extension to determine what programme they will use to open thefile, but you can change the
extension by simply renaming thefile, the content will not changeit will still be binary or text
whichever it was originally. (Y ou can prove this by renaming a text filein Windows to

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 114

FileHandling 12/04/2010

. exe whereupon Windows will tregt the file as an executable, but when you try to run it you will get
an error because the text is not really executable binary code! If you now rename it back to . t xt the
filewill open in Notepad exactly as it did before, the content has not been altered at all - in fact you
could even have opened the text in Notepad while it was named as a. exe and it would have worked
just aswel!)

To read our binary data back again we need to open thefilein' rb' mode, read the datainto a
sequence of bytes, close the file and finally unpack the data using ast r uct format string. The
guestionis: how do wetell what the format string looks like? In general we would need to find the
binary format from the file definition (there are several web sites which provide this information - for
example Adobe publish the definition of their common PDF binary format). In our case we know it
must be like the one we created in f or mat Addr ess(), namely' i Ns' where N is avariable number.
How do we determine the value of N?

The struct modul e provides some helper functions that return the size of each data type, so by firing
up the Python prompt and experimenting we can find out how many bytes of data we will get back for
each data type:

>>> jnport struct

>>> print struct.calcsize('i')
4

>>> print struct.calcsize('s')
1

Ok, we know that our datawill comprise 4 bytes for the number and one byte for each character. So
N will bethetotal length of the data minus 4. Let's try using that to read our file:

i mport struct
f =file(' address.bin','rb")
data = f.read()

f.close()

fmString = "i %ds" % (len(data) - 4)

nunber, rest = struct.unpack(fm String, data)
rest = str(rest)

address =" ".join((str(nunber),rest))

print("Address after restoring data:", address)

Note: We had to convert r est toastring usingthest r () function since Python considered it to be
of type byt es (see the sidebar above) which won't work with j oi n() .

And that's it on binary data files, or at least as much as I'm going to say on the subject. As you can see
using binary data introduces several complications and unless you have a very good reason | don't
recommend it. But at least if you do need to read a binary file, you can do it (provided you know what
the data represented in the first place of course!)

Random Accessto Files

The last aspect of file handling that I'll consider is called random access. Random access means
moving directly to a particular part of the file without reading all the intervening data. Some
programming languages provide a special indexed file type that can do this very quickly but in most
languages its built on top of the normal sequential file access that we have been using up till now.

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 115

FileHandling 12/04/2010

The concept used is that of a cursor that marks the current position within thefile, literally how many
bytes we are from the beginning. We can move this cursor relative to its current position or relative to
the start of the file. We can also ask thefile to tell us where the cursor is currently.

By using afixed lindength (perhaps by padding our data strings with spaces or some other character
where necessary) we can jump to the start of a particular line by multiplying the length of aline by the
number of lines. Thisis what gives the impression of random access to the data in thefile.

Wheream |1?

To determine wherewe arein afilewe can usethet el | () method of afile. For exampleif | open a
file and read threelines, | can then ask the file how far into thefile | am.

Let'slook at an example, first | will create afilewith 5 lines of text all the same length (the equal
length businessisn't strictly necessary but it does make life easier!). Then I'll read three lines back and
ask wherewe are. I'll then go back to the beginning, read one line then jump to the third line and print
it, jumping over the second line. Like this:

create 5 lines of 20 chars (+ \n)
testfile = open('testfile.txt', ' w)
for i in range(5):

testfile.write(str(i) * 20 + "\n")
testfile.close()

read 3 lines and ask where we are
testfile = open('testfile.txt','r")
for line in range(3):

print(testfile.readline().strip())
position = testfile.tell ()
print("At position: ", position, "bytes")

go back to the beginning

testfile.seek(0)

print(testfile.readline().strip()) # repeat first line
lineLength = testfile.tell()

testfile.seek(2*lineLength) # go to end of line 2
print(testfile.readline().strip()) # the 3rd line
testfile.close()

Note the use of the seek() function to move the cursor. The default operation is to moveit to the
byte number specified, as shown here, but extra arguments can be provided that change the indexing
method used. Also note that the value printed by thefirst t el | () depends on the length of a newline
on your platform, on my Windows XP PC it printed 66 indicating that the newline sequenceis 2 bytes
long. But sincethisis a platform specific value and | want to make my code portable |'ve used

tel | () agan, after reading oneline, to work out how long each linereally is. These kind of "cunning
ploys" are often necessary when dealing with platform specific issues!

| Things to remember

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 116

FileHandling 12/04/2010

® Open files before using them

® Files can usualy only be read or written but not both at the same time

® Python'sreadl i nes() function reads al thelinesin afile, whiler eadl i ne() only reads one
line at atime, which may help save memory.

® However you don't usually need to use either since Python's open function works with

f or loops.

® Closefiles after use,

® Binary files need the mode flag to end in 'b" and you need to interpret the data after reading it -
usually with the struct module.

® tell() andseek() enable pseudo-random access to sequential files

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePaga\l 2p\tutfiles.htm Page 117

Text Handling 12/04/2010

Manipulating Text

What will we cover?

How to split lines of text into character groups

How to search for strings of text within other strings
How to replace text within a string

How to change case of characters

Handling text is one of the most common things that programmers do. As aresult there are lots of
specific tools in most programming languages to make this easier. In this section we will ook at some
of these and how we might use them in performing typical programming tasks.

Some of the most common tasks that we can do when working with text are:

splitting lines of text into character groups
searching for strings of text within other strings
replacing text within a string

changing case of characters

We will ook at how to do each of these tasks using Python and then briefly consider how VB Script
and JavaScript handle text processing.

In Python we use string methods to manipul ate text strings. Y ou might recall, from the Raw

Materia s topic, that methods are like functions attached to data. We can access the methods using the
same dot notation we use to access functions in a module, but instead of using a modul e name we use
the dataitself. Let's see how that works.

Splitting strings

Thefirst task we consider is how to split a string into its constituent parts. Thisis often necessary
when processing files since we tend to read afile line by line, but the data may well be contained
within segments of the line. An example of thisis our Address Book example, where we might want
to access the individual fields of the entries rather than just print the whole entry.

The Python method we use for thisiscalled spl it () anditisused likethis:

>>> aString = "Here is a (short) String"
>>> print(aString.split())
['Here', "is', "a', '(short)', "String']

Notice we get alist back containing the words within aSt ri ng with all the spaces removed. The
default separator for ' ' . split () iswhitespace (ie. tabs, newlines and spaces). Let'stry using it
again but with an opening parenthesis as the separator:

)

>>> print(astring.split(' (")
ing]

['"Here is a ', 'short) Str

Notice the difference? There are only two eements in the list this time and the opening parenthesis
has been removed from the front of * short) ' . That's an important point to note about

"' .split(),that it removes the separator characters. Usually that's what we want, but just
occasionaly well wish it hadn't!

D:\DOC\HomePagell 2p\tuttext.htm Page 118

Text Handling 12/04/2010

Thereisasoa' ' .joi n() method which can takealist (or indeed any other kind of sequence) of
strings and join them together. One confusing feature of ' * . j oi n() isthat it uses the string on which
we call the method as the joining characters. You'll seewhat | mean from this example:

>>> | st = ["here' ,"is',"a ,'list',"of', " words']
>>> print("-+-'.join(lst))
here-+-is-+-a-+-1ist-+-of-+-words

>>> print(" '.join(lst))

here is a list of words
It sort of makes sense when you think about it, but it does ook wierd when you first seeit.
Counting words

Let'srevisit that word counting program | mentioned in the functions topic. Recall the Pseudo
Code looked like:

def numaords(aString):
list = split(aString) # list with each elenent a word
return len(list) # return nunber of elenents in |ist

for line in file:
total = total + numwrds(line) # accumulate totals for each line

print("File had % words" %total)

Now we know how to get the lines from the file let's consider the body of the

numaor ds() function. First we want to create alist of wordsin aline. That's nothing more than
applying thedefault' * . split () method. Referring to the Python documentation we find that the
builtin function | en() returns the number of eementsin alist, which in our case should be the
number of words in the string - exactly what we want.

So thefinal codelooks like:

def numaords(aString):
st = aString.split() # split() is a nethod of the string object aString
return len(lst) # return nunber of elenments in the |ist

inp = file("menu.txt","r")
total = 0 # initialize to zero; also creates variable

for line in inp:
total = total + numwrds(line) # accunulate totals for each |ine

print("File had % words" %total)

i np. cl ose()

That's not quite right of course because it counts things like an ampersand character as aword
(although maybe you think it should...). Also, it can only be used on a single file (menu.txt). But it's
not too hard to convert it to read the filename from the command line (ar gv[1]) or via

i nput () aswesaw in the Talking to the user section. I'll leave that as an exercise for the reader.

Sear ching Text

D:\DOC\HomePagell 2p\tuttext.htm Page 119

Text Handling 12/04/2010

The next common operation we will ook at is searching for a sub-string within alonger string. Thisis
again supported by a Python string method, thistimecalled' ' . fi nd() It'sbasic useis quite simple,
you provide a search string and if Python finds it within the main string it returns the index of the first
character of the substring, if it doesn't find it, it returns -1:

>>> aString = "here is along string with a substring inside it"
>>> print(aString.find('long'))

10

>>> print(aString.find('oxen'))

-1

>>> print(aString.find('string'))

15

Thefirst two examples are straightforward, the first returns the index of the start of ' | ong' and the
second returns - 1 because' oxen' does not occur inside aSt ri ng. The third example throws up an
interesting point, namely that find only locates the first occurrence of the search string, but what do
we do if the search string occurs more than oncein the original string?

One option isto use the index of thefirst occurrence to chop the original string into two pieces and
search again. We keep doing this until we get a-1 result. Like this:

aString = "Bow wow says the dog, how many ows are in this string?"
tenp = aString[:] # use slice to nmake a copy

count = 0

i ndex = tenp.find('ow)

while index !'= -1:

count +=1
tenp = tenp[index + 1:] # use slicing
i ndex = tenp.find('ow)

print("W found % occurrences of "ow in %" % (count, aString))

Here we just counted occurrences, but we could just as well have collected the index results into alist
for later processing.

Thefi nd() method can speed this process up alittle by using a one of its extra optional parameters.
That is, a start location within the original string:

aString = "Bow wow says the dog, how many o's are in this string?"
count = 0
index = aString.find('ow) # use default start
while index !'= -1:
count += 1
start = index + 1

index = aString.find('ow, start) # set new start

print("We found % occurrences of '"ow in %" % (count, aString))

This solution removes the need to create a new string each time, which can be a slow process if the
string islong. Also, if we know that the substring will definitely only be within the first so many
characters (or we aren't interested in later occurrences) we can specify both a start and stop value, like
this.

>>> # |limt search to the first 20 chars
>>> aString = "Bow wow says the dog, how many ow s are in the string?"

D:\DOC\HomePagell 2p\tuttext.htm Page 120

Text Handling 12/04/2010
>>> print(aString.find('the',0,20))

To complete our discussion of searching there are a couple of nice extra methods that Python
provides to cater for common search situations, namely ' ' . startswi th() and' ' . endswi t h().
From the names alone you probably can guess what these do. They return True or Fal se depending on
whether the original string starts with or ends with the given search string, like this:

>>> print("Python rocks!".startswith("Perl"))
Fal se

>>> print("Python rocks!".startsw th(' Python'))
True

>>> print("Python rocks!".endsw th('sucks!"'))
Fal se

>>> print("Python rocks!".endswith('cks!'))
True

Notice the boolean result. After al, you already know where to look if the answer is True! Also
notice that the search string doesn't need to be a complete word, a substring isfine. Y ou can also
provideast art and st op position withinthe string, just like' ' . fi nd() to effectively test for a
string at any given location within a string. Thisis not afeature that is used much in practice.

And finally for a simple test of whether a substring exists anywhere within another string you can use
the Python i n operator, likethis:

>>> if 'foo' in 'foobar': print('True')
True
>>> if 'baz' in 'foobar': print('True')
>>> if 'bar' in 'foobar': print('True')
True

That's al I'll say about searching for now, let's look at how to replace text next.
Replacing text

Having found our text we often want to change it to something else. Again the Python string methods
provide asolution withthe' ' . r epl ace() method. It takes two arguments: a search string and a
replacement string. Thereturn valueis the new string as a result of the replacement.

>>> aString = "Mary had a little lanmb, its fleece was dirty!"
>>> print(aString.replace('dirty', white'))
"Mary had a little lanb, its fleece was white!"

Oneinteresting difference between' ' . find() and' ' . repl ace isthat replace, by default, replaces
all occurrences of the search string, not just thefirst. An optional count argument can limit the
number of replacements:

>>> aString = "Bow wow wow said the little dog"

>>> print(aString.replace('ow,'ark'))

Bark wark wark said the little dog

>>> print(aString.replace('ow,'ark',1)) # only one
Bark wow wow said the little dog

D:\DOC\HomePage\l2p\tuttext.htm Page 121

Text Handling 12/04/2010

It is possible to do much more sophisticated search and repl ace operations using something called a
regular expression, but they are much more complex and get a whole topic to themselves in the
"Advanced" section of the tutorial.

Changing the case of characters

Onefinal thing to consider is converting case from lower to upper and vice-versa. Thisisn't such a
common operation but Python does provide some hel per methods to do it for us:

>>> print("M Xed Case".lower())

n xed case

>>> print("M Xed Case". upper())

M XED CASE

>>> print("M Xed Case".swapcase())
m XED cASE

>>> print("M Xed Case".capitalize())
M xed case

>>> print('MXed Case'.title())

M xed Case

>>> print("TEST".isupper())
True

>>> print("TEST".islower())
Fal se

Notethat' ' . capitalize() capitalizesthe entire string not each word withinit - that'stitle()'s
job!. Also note the two test functions (or predicates) ' ' . i supper () and' ' .i sl ower (). Python
provides a whole bunch of these predicate functions for testing strings, other useful tests include:

".isdigit(),'" .isalpha() and''.isspace(). Thelast checksfor al kinds of whitespace
not just literal space characters!

We will be using many of these string methods as we progress through the tutorial, and in particul ar
the Grammar Counter case study uses several of them.

Text handling in VBScript

Because VB Script descends from BASIC it has awealth of builtin string handling functions. In fact in
the reference documentation | counted at least 20 functions or methods, not counting those that are
simply there to handle Unicode characters.

What this means is that we can pretty much do al the things we did in Python using VBScript too. I'll
quickly run through the options bel ow:

Splitting text

We start with the Spl i t function:

<script type="text/vbscript">

Dms

Dim | st

s = "Here is a string of words”
st = Split(s) returns an array
MsgBox | st (1)

</script>

As with Python you can add a separator value if the default whitespace separation isn't what you need.

D:\DOC\HomePage\l2p\tuttext.htm Page 122

Text Handling 12/04/2010
Also as with Python thereis aJoi n function for reversing the process.
Searching for and replacing text

Searching isdonewith I nSt r, short for "In String”, obviously.

<script type="text/vbscript">

Dms,n

s = "Here is a long string of text”

n =1nStr(s, "long")

MsgBox "long is found at position: " & CStr(n)
</script>

The return value is normally the position within the original string that the substring starts. If the
substring is not found then zero is returned (this isn't a problem because VBScript startsits indices at
1, so zerois not avalid index). If either stringisaNul | aNul | isreturned, which makes testing error
conditions slightly more tricky with a combined test required.

As with Python we can specify a sub range of the original string to search, using a start value, like
this.

<script type="text/vbscript">

Dms,n

s = "Here is a long string of text”
n=1nStr(6, s, "long") ' start at position 6
[

f n=0or n=Null Then ' check for errors
MsgBox "lInvalid string found"
El se
MsgBox "long is found at position: " & CStr(n)
End If
</script>

Unlike Python we can also specify whether the search should be case-sensitive or not, the default is
case-sensitive.

Replacing text is done with the Repl ace function. Likethis:

<script type="text/vbscript">

Dms

s = "The quick yellow fox junped over the | og"
MsgBox Repl ace(s, "yellow', "brown")

</script>

We can provide an optional final argument specifying how many occurrences of the search string
should be replaced, the default is al of them. We can also specify a start position asfor | nSt r above.

Changing case

Changing case in VBScript is donewith UCase and LCase, thereis no equivaent of Python's
capitalizeortitle methods.

<script type="text/vbscript">
Dms

s = "M Xed Case"

MsgBox LCase(s)

D:\DOC\HomePagell 2p\tuttext.htm Page 123

Text Handling 12/04/2010

MsgBox UCase(s)
</script>

And that's all I'm going to cover in this tutorial, if you want to find out more check the VBScript help
filefor thelist of functions.

Text handling in JavaScript

JavaScript is the least well equipped for text handling of our three languages. Even so, the basic
operations are catered for to some degree, it is only in the number of "bells & whistles" that
JavaScript suffers in comparison to VBScript and Python. JavaScript compensates somewhat for its
l[imitations with strong support for regular expressions (which we cover in alater topic) and these
extend the apparently primitive functions quite significantly, but at the expense of some added
complexity.

Like Python JavaScript takes an object oriented approach to string manipulation, with all the work
being done by methods of the St r i ng class.

Splitting Text

Splitting text is done using the spl i t method:

<script type="text/javascript">
var alist, aString = "Here is a short string";
aList = aString.split(" ");
docunent.wite(aList[1]);

</script>

Notice that JavaScript requires the separator character to be provided, thereis no default value. The
separator is actually aregular expression and so quite sophisticated split operations are possible.

Sear ching Text

Searching for text in JavaScript is doneviathesear ch() method:

<script type="text/javascript">

var aString = "Round and Round the ragged rock ran a rascal";
docunent.wite("ragged is at position: " + aString.search("ragged"));
</script>

Once again the search string argument is actually a regular expression so the searches can be very
sophisticated indeed. Notice, however, that there is no way to restrict the range of the original string
that is searched by passing a start position (although this can aso be simulated using regular
expression tricks).

JavaScript provides another search operation with slightly different behaviour called mat ch(), | don't
cover the use of mat ch here.

Replacing Text

To do areplace operation we use ther epl ace() method.

<script type="text/javascript">
var aString = "Hunpty Dunpty sat on a cat";

D:\DOC\HomePage\l2p\tuttext.htm Page 124

Text Handling 12/04/2010

document.wite(aString. replace("cat","wall"));
</script>

And once again the search string can be a regular expression, you can begin to see the pattern |
suspect! The replace operation replaces all instances of the search string and, so far as | can tdll, there
IS no way to restrict that to just one occurence without first splitting the string and then joining it back
together.

Changing case

Changing caseis performed by two functions: t oLower Case() andt oUpper Case()

<script type="text/javascript">

var aString = "This string has M xed Case";
docunent.wite(aString.toLowerCase()+ "
");
docunent.wite(aString.toUpperCase()+ "
");
</script>

Thereis very little to say about this pair, they do a simple job simply. JavaScript, unlike the other
languages we consider provides awealth of special text functions for processing HTML, this
revealing it's roots as a web programming language. We don't consider these here but they are all
described in the standard documentation.

That concludes our look at text handling, hopefully it has given you the tools you need to process any
text you encounter in your own projects. One final word of advice: always check the documentation
for your language when processing text, there are often powerful tools included for this most
fundamental of programming tasks.

Thingsto remember

® Text processing is a common operation with powerful support built-in to most languages

® The most common tasks are splitting text, searching for and replacing text and changing case
® Each language provides different levels of support but the three basic operations are nearly
always available.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePagell 2p\tuttext.htm Page 125

Error Handling 12/04/2010

Handling Errors

What will we cover?

® A short history of error handling
® Two techniques for handling errors
® Defining and raising errors in our code for others to catch

A Brief History of Error Handling

Error handling is the process of catching the errors generated by our program and hiding them from
our users. It doesn't matter too much if we, as programmers get exposed to a Python error message -
we are supposed to understand all that techno speak. But our users are probably not programmers and
they want nice, easy to understand messages when things go wrong, and ideally, they want us to catch
the error and fix it without them ever knowing about it!

And that's where error handling comes in. Almost every language provides a mechanism for catching
errors as they occur, finding out what went wrong and, if possible, taking appropriate action to fix the
problem. Over time there have been a number of different approaches adopted to do this and we
tackle the subject by following the historical development of the technology. In that way you can
hopefully appreciate why the new methods have been introduced. At the end of the topic you should
be able to write user friendly programs that never allow a hint of a Python error message to be seen by
your USers.

VBScript is by far the most bizarre of our three languages in the way it handles errors. The reason for
thisisthat it is built on a foundation of BASIC which was one of the earliest programming languages
(around 1963) and VB Script error handling is one place where that heritage shines through. For our
purposes that's not a bad thing because it gives me the opportunity to explain why VB Script works as
it does by tracing the history of error handling from BASIC through Visual Basic to VBScript. After
that we will look at a much more modern approach as exemplified in both JavaScript and Python.

In traditional BASIC, programs were written with line numbers to mark each one of code.
Transferring control was done by jumping to a specific line using a statement called GOTO (we saw
an example of this in the Branching topic). Essentially this was the only form of control possible. In
this environment a common mode of error handling was to declare an er r or code variable that would
store an integer value. Whenever an error occurred in the programthe er r or code variable would be
set to reflect the problem - couldn't open afile, type mismatch, operator overflow etc

This led to code that looked like this fragment out of a fictitious program:

1010 LET DATA = I NPUT FILE

1020 CALL DATA PROCESSI NG_FUNCTI ON
1030 I'F NOT' ERRCORCCDE = 0 GOTO 5000
1040 CALL ANOTHER_FUNCTI ON

1050 I'F NOT' ERRORCCDE = 0 GOTO 5000
1060 REM CONTI NUE PROCESSI NG LI KE TH S

5000 | F ERRORCODE = 1 GOTO 5100
5010 | F ERRORCODE = 2 GOTO 5200
5020 REM MORE | F STATEMENTS

5100 REM HANDLE ERROR CODE 1 HERE

5200 REM HANDLE ERROR CODE 2 HERE

D:\DOC\HomePagell 2p\tuterrors.htm Page 126

Error Handling 12/04/2010

As you can see almost half of the main program is concerned with detecting whether an error
occurred. Over time a slightly more elegant mechani sm was introduced whereby the detection of
errors and their handling was partially taken over by the language interpreter, this looked like:

1010 LET DATA = | NPUTFI LE

1020 ON ERROR GOTO 5000

1030 CALL DATA PROCESSI NG_FUNCTI ON
1040 CALL ANOTHER _FUNCTI ON

5000 | F ERRORCODE
5010 | F ERRORCODE

1 GOTO 5100
2 GOTO 5200

This allowed a single line to indicate where the error handling code would reside. It still required the
functions which detected the error to set the ERRORCODE value but it made writing (and reading!)
code much easier.

So how does this affect us? Quite simply Visual Basic still provides this form of error handling
although the line numbers have been replaced with more human friendly labels. VBScript as a
descendant of Visual Basic provides a severely cut down version of this. In effect VBScript allows us
to choose between handling the errors locally or ignoring errors compl etely.

To ignore errors we use the following code:

On Error Goto O ' O inplies go nowhere
SoneFuncti on()
SoneQt her Funct i on()

To handle errors locally we use:

On Error Resume Next

SoneFuncti on()

If Err.Nunber = 42 Then
handl e the error here

SoneQt her Funct i on()

This seems slightly back to front but in fact simply reflects the historical process as described above.

The default behavior is for the interpreter to generate a message to the user and stop execution of the
program when an error is detected. Thisiswhat happens with GoTo 0 error handling, so in effect
GoTo 0 isaway of turning off local control and allowing the interpreter to function as usual.

Resune Next error handling allows us to either pretend the error never happened, or to check the
Error object (called Er r) and in particular the number attribute (exactly like the early errorcode
technique). The Er r object also has a few other bits of information that might help us to deal with the
situation in aless catastrophic manner than simply stopping the program. For example we can find out
the source of the error, in terms of an object or function etc. We can also get atextual description that
we could use to populate an informational message to the user, or write anotein alog file. Finally we
can change error type by using the Rai se method of the Er r object. We can also use Rai se to
generate our own errors from within our own Functions.

As an example of using VBScript error handling lets look at the common case of trying to divide by
zero:

D:\DOC\HomePage\l 2p\tuterrors.htm Page 127

Error Handling 12/04/2010

<script type="text/vbscript">
D m x ,y Resul t
x = Cint(InputBox("Enter the nunber to be divided"))
y = CI Nt (InputBox("Enter the nunber to divide by"))
On Error Resume Next
Result = x/y
If Err.Nunmber = 11 Then ' Divide by zero
Result = Nul |
End If
On Error GoTo O ' turn error handling off again
If VarType(Result) = vbNull Then
MsgBox "ERROR Coul d not perform operation”
El se
MsgBox CStr(x) & " divided by " & CStr(y) & " is " & CStr(Result)
End If
</script>

Frankly that's not very nice and while an appreciation of ancient history may be good for the soul,
modern programming languages, including both Python and JavaScript, have much more e egant ways
to handle errors, so let's look at them now.

Error Handling in Python
Exception Handling

In recent programming environments an alternative way of dealing with errors known as exception
handling works by having functions throw or raise an exception. The system then forces a jump out
of the current block of code to the nearest exception handling block. The system provides a default
handler which catches all exceptions which have not aready been handled € sewhere and usually
prints an error message then exits.

One big advantage of this style of error handling is that the main function of the program is much
easier to see becauseit is not mixed up with the error handling code, you can simply read through the
main block without having to look at the error code at all.

Let's see how this style of programming works in practice.
Try/Except

The exception handling block is coded rather likean if...then... el se block:

try:

program | ogi c goes here
except ExceptionType:

exception processing for naned exception goes here
except Anot her Type:

exception processing for a different exception goes here
el se:

here we tidy up if NO exceptions are raised

Python attempts to execute the statements between thet ry and thefirst except statement. If it
encounters an error it will stop execution of thet ry block and jump down to the except statements.
It will progress down theexcept statements until it finds one which matches the error (or exception)
type and if it finds amatch it will execute the code in the block immediatdly following that exception.
If no matching except statement is found, the error is propagated up to the next level of the program
until, either amatch is found or the top level Python interpreter catches the error, displays an error
message and stops program execution - this is what we have seen happening in our programs so far.

D:\DOC\HomePagell 2p\tuterrors.htm Page 128

Error Handling 12/04/2010

If no errors are found in thet ry block then thefinal el se block is executed although, in practice, this
featureisrardy used. Note that an except statement with no specific error type will catch al error
types not already handled. In general thisis a bad idea, with the exception of the top level of your
program where you may want to avoid presenting Python's fairly technical error messages to your
users, you can use a general except statement to catch any uncaught errors and display a friendly
"shutting down" type message.

It is worth noting that Python provides at r aceback module which enables you to extract various
bits of information about the source of an error, and this can be useful for creating log files and the
like. I won't cover the traceback module here but, if you need it, the standard modul e documentation
provides afull list of the available features.

Let'slook at areal example now, just to see how this works:

value = input("Type a divisor: ")
try:

val ue = int(val ue)

print("42 /| % = %" % (val ue, 42/value))
except Val ueError:

print("I can't convert the value to an integer”)
except ZeroDi vi si onError

print("Your value should not be zero")
except:

print("Sonething unexpected happened”)
el se: print("Program conpl eted successfully")

If you run that and enter a non-number, a string say, at the prompt, you will get the

Val ueEr r or message, if you enter 0 you will get the Zer oDi vi si onEr r or message, if you hit
Ctrl-Citwill raiseaKeyboardl nt errupt exception and you'll see the " Something unexpected...”
message and, finally, if you enter avalid number you will get the result plus the "Program compl eted"

message.
Try/Finally

Thereis another type of 'exception’ block which allows us to tidy up after an error, it's called a
try...finally block andtypically is used for closing files, flushing buffers to disk etc. The
final | y block is always executed last regardless of what happensinthe try section.

try:
normal program | ogic

finally:
here we tidy up regardless of the
success/failure of the try bl ock

This becomes very powerful when combined with at ry/ except block. It looks likethis:

print("Programstarting”)
try:
data = open("data.dat")
print("data file opened")
value = int(data.readline().split()[2])
print("The calcul ated value is %" % (value/ (42-value)))
except ZeroDi vi si onError
print("Value read was 42")
finally:

D:\DOC\HomePagell 2p\tuterrors.htm Page 129

Error Handling 12/04/2010

dat a. cl ose()
print("data file cl osed")

print("Program conpl eted")

Note: The data file should contain aline with a number in the 3rd field, something like:

Foo bar 42

In this case the data file will always be closed regardless of whether an exceptionis raised in the
try/except block or not. Note that thisis different behavior to the el se clause of

try/ except becauseit only gets called if no exception is raised, and equally simply putting the code
outsidethet ry/ except block would mean the file was not closed if the exception was anything
other than a Zer oDi vi si onError . Only adding af i nal | y block ensures that thefileis

always closed.

Also noticethat | put theopen() statement insidethet ry/ except block. If I'd actually wanted to
catch afile open error al 1'd need to do is add another except block for an | OEr r or . Why not try
that yourself then try opening a non-existent file to seeit in action?

Generating Errors

What happens when we want to generate exceptions for other people to catch, in amodule say? In
that casewe usethe rai se keyword in Python:

nunerator = 42
denomi nator = int(input("Wat value will | divide 42 by?"))
i f denom nator == O:

rai se ZerobDi vi sionError

ThisraisesaZer oDi vi si onEr r or exception which can be caught by a try/ except block. To the
rest of the program it looks exactly as if Python had generated the error internally. Another use of the
rai se keyword is to propagate an error to a higher level in the program from within an except block.
For example we may want to take some local action, log the error in afile say, but then alow the
higher level program to decide what ultimate action to take. It looks likethis:

def div127by(datum:

try:
return 127/ (42-datum

except ZeroDivi sionError:
logfile = open("errorlog.txt","w")
logfile.write("datum was 42\ n")
| ogfile.close()
rai se

try:
di v127by(42)
except ZeroDivi sionError:

print("You can't divide by zero, try another value")

Notice how the function di v127by() catches the error, logs a message in the error file and then
passes the exception back up for the outer t r y/ except block to deal with by calling r ai se with no
specified error object.

User Defined Exceptions

D:\DOC\HomePagell 2p\tuterrors.htm Page 130

Error Handling 12/04/2010

We can also define our own exception types for even finer grained control of our programs. We do
this by defining a new exception class (we briefly looked at defining classes in the Raw Materials topic
and will look at it in more detail in the Object Oriented Programming topic later in the tutorial).
Usually an exception classis trivial and contains no content of its own, we simply defineit as a
sub-class of Except i on and useit asakind of "smart label" that can be detected by

except statements. A short example will suffice here:

>>> cl ass BrokenError(Exception): pass
Lo5 try:
rai se BrokenError

except BrokenError:
print("We found a Broken Error")

Note that we use a naming convention of adding "Error" to the end of the class name and that we
inherit the behavior of the generic Except i on class by including it in parentheses after the name -
well learn al about inheritance in the OOP topic.

Onefina point to note on raising errors. Up until now we have quit our programs by importing sys
and calling theexi t () function. Another method that achieves exactly the same result is to raise the
Syst enExi t eror, likethis:

>>> rai se Systenkxit

The main advantage being that we don't needtoi nport sys first.

JavaScript

JavaScript handles errors in avery similar way to Python, using the keywordst ry, cat ch and
t hr owin place of Python'st ry, except andr ai se.

WEel| take alook at some examples but the principles are exactly the same as in Python. Recent
versions of JavaScript have introduced thef i nal | y construct and JavaScript'sfi nal | y clause can
also be combined with t ry/ cat ch inasingle construct; see the JavaScript documentation for details.

Catchingerrors

Catching errorsis done by using at ry block with a set of cat ch statements, aimost identically to
Python:

<script type="text/javascript">

try{
var x = NonExi stent Function();

docunent .. write(x);

catch(err){
docunment .wite("We got an error in the code");
}

</script>

D:\DOC\HomePagell 2p\tuterrors.htm Page 131

Error Handling 12/04/2010

One big difference is that you only get to use onecat ch statement per t ry construct, you have to
examine the error passed to see what kind it isinsidethe cat ch block. Thisis, in my view, abit more
messy than Python's multiple except style based on exception type. Y ou can see a basic exampl e of
testing the error value in the code bel ow.

Raising errors

Similarly we can raise errors by using thet hr ow keyword just as we used ther ai se keyword in
Python. We can also create our own error types in JavaScript as we did in Python but a much easier
method is just to use a string.

<script type="text/javascript">

try{
throw("New Error");

}cat ch(e){

if (e == "New Error")
docunent.wite("W caught a new error");
el se

document . wite("An unexpected error found");

</script>

And that's all I'll say about error handling. As we go through the more advanced topics coming up you
will see error handling in use, just as you will see the other basic concepts such as sequences, loops
and branches. In essence you now have all of thetools at your disposal that you need to create
powerful programs. It might be a good idea to take some time out to try creating some programs of
your own, just a couple, to try to sound these ideas into your head before we move on to the next set
of topics. Here are a few sampleidess:

* A simple game such as OXO or Hangman

* A basic database, maybe based on our address book, for storing details of your video, DVD or
CD callection.

¢ A diary utility that will let you store important events or dates and, if you fed really keen, that
automatically pops up a reminder.

To complete any of the above you will need to use al of the language features we have discussed and
probably afew of the language modules too. Remember to keep checking the documentation, there
will probably be quite a few tools that will make the job easier if you look for them. Also don't forget
the power of the Python >>> prompt. Try things out there until you understand how they work then
transfer that knowledge into your program - it's how the professionals do it! Most of all, have fun!

See you in the Advanced section :-)

Thingsto remember

Check VBScript error codes using ani f statement

Catch exceptions with a Python except or JavaScript cat ch clause
Generate exceptions using the Python r ai se or JavaScript throw keyword
Error types can be a class in Python or a simple string in JavaScript

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePagell 2p\tuterrors.htm Page 132

Namespaces 12/04/2010
Namespaces

What will we cover?

* The meaning of namespace and scope and why they are important
* How namespaces work in Python
* Namespaces in VBScript and JavaScript

I ntroduction

What's a namespace? | hear you ask. Well, it's kinda hard to explain. Not because they are especialy
complicated, but because every language does them differently. The concept is pretty straightforward,
anamespace is a space or region, within a program, where a name (of a variable, function, class &c) is
valid. We actually use thisideain everyday life. Suppose you work in a big company and thereis a
colleague called Joe. In the accounts department there is another guy called Joe who you see
occasionally but not often. In that case you refer to your colleague as "Jo€" and the other one as "Joe
in Accounts'. You also have a colleague called Susan and there is another Susan in Engineering with
whom you work closealy. When referring to them you might say "Our Susan” or " Susan from
Engineering”. Do you see how you use the department name as a qualifier? That's what namespaces
do in aprogram, they tell both programmers and the translator which of several identical namesis
being referred to.

They came about because early programming languages (like BASIC) only had Global Variables,
that is, ones which could be seen throughout the program - even inside functions. This made

mai ntenance of large programs difficult since it was easy for one bit of a program to modify a variable
without other parts of the program realizing it - this was called a side-effect. To get round this, later
languages (including modern BASICs) introduced the concept of namespaces. (C++ has taken thisto
extremes by allowing the programmer to create their own namespaces anywhere within a program.
Thisis useful for library creators who might want to keep their function names unique when mixed
with libraries provided by another supplier.)

Another term used to describe a namespace is scope. The scope of a name is the extent of a program
whereby that name can be unambiguously used, for example inside a function or amodule. A name's
namespace is exactly the same as it's scope. There are afew very subtle differences between the terms
but only a Computer Scientist pedant would argue with you, and for our purposes namespace and
scope are identical.

Python's approach

In Python every modul e creates it's own namespace. To access those names we have to either precede
them with the name of the module or explicitly import the names we want to use into our modul€e's
namespace. Nothing new there, we've been doing it withthesys and ti me modules already. (A
class definition also creates its own namespace. Thus, to access a method or property of a class, we
need to use the name of the instance variable or the class namefirst. Well talk alot more about that in
the OOP topic.)

In Python there are atotal of five possible namespaces (or scopes):

1. Built in scope - names defined within Python itself, these are always available from anywhere
in your program.

D:\DOC\HomePagell 2p\tutname htm Page 133

Namespaces 12/04/2010

2. Module scope - names defined, and therefore visible within afile or module, confusingly thisis
referred to as global scope in Python whereas globa normally means visible from anywherein
other languages.

3. Local scope - names defined within afunction or a class method

4. Class scope - names defined inside classes, well touch on these in the OOP topic.

5. Nested scope - a slightly complex topic which you can pretty much ignore!

Let'stake alook at a piece of code that includes examples of all of these (except class and nested):

def square(x):
return x*x

data = int(input(' Type a nunber to be squared: "))
print(data, 'squared is: ', square(data))

The following table lists each name and the scope to which it belongs:

Name Namespace
square Module/global
X local (to square)
data Module/global
int built-in
input built-in
print built-in

Note that we don't count def or r et ur n as names because they are keywords or, part of the language
definition, if you try to use a keyword as the name of a variable or function you will get an error.

So far so good. Now how does this come together when variables in different namespaces have the
same name? Or when we need to reference a name that is not in the current namespace?

Accessing Names outside the Current Namespace

Here we look in more detail at exactly how Python locates names, even when the names we are using
are not in the immediate namespace. It is resolved as follows, Python will look:

1. withinit's local namespace (the current function),
2. within the module scope (the current file),
3. thebuilt-in scope.

But what if the nameisin adifferent module? Well, wei npor t the module, as we've already seen
many times in the tutorial. Importing the modul e actually makes the module name visible in our

modul e namespace. We can then use the modul e name to access the variable names within the module
using our familiar nodul e. nane style. This explains why, in general, it is not a good idea to import
all the names from a module into the current file: there is a danger that a module name will be the
same as one of your variables and one of them will mask the other causing strange behavior in the
program.

For example let's define two modul es, where the second imports the first:

#H#### nodul e first. py #A##AH##H
spam = 42

D:\DOC\HomePagell 2p\tutname htm Page 134

Namespaces 12/04/2010

def print42(): print(spam)
HEHHHBHHH AR HH PR H PR R

nodul e second. py ###H#H#HHH
fromfirst inport * # inport all names fromfirst

spam = 101 # create spamvariable, hiding first's version
print42() # what gets printed? 42 or 1017

BHEHBHBHHHHHHBHBHBHBHBHBHBHBHHHH

If you thought it would print 101 then you were wrong (and | admit | expected that when | first wrote
the example!). The reason why it prints 42 instead has to do with the definition of a variable in Python
as we described it away back in the Raw Materials topic. Recall that anameis simply alabd used to
reference an object. Now in the first module the name pr i nt 42 refers to the function object defined
in the module (if this sounds odd there's more explanation in the advanced topic Functional
Programming where it discusses something called a lambda expression). So although we imported the
name into our module we did not import the function, which still refers to its own modul €'s version of
spam Thus when we created our new spam variable it has no effect on the function referred to by the
namepri nt 42

All of that confusion should serve to illustrate why, although it's more typing, it is much safer to
access names in imported modul es using the dot notation. There are a few modules, such as Tkinter
which well meet later, which are commonly used by importing all of the names, but they are written in
such away to minimize the risk of name conflicts, although the risk always exists and can create very
hard to find bugs.

Finally thereis another safe way to import a single name from amodule, likethis:

fromsys inport exit

Hereweonly bringthe exit functioninto thelocal namespace. We cannot use any other sys
names, not even sys itsdf!

Avoiding Name Clashes

If afunction refersto avariable called X and there exists an X within the function (local scope) then
that is the one that will be seen and used by Python. It's the programmer’s job to avoid name clashes
such that alocal variable and modul e variable of the same name are not both required in the same
function - thelocal variable will mask the module name.

Thereis no problemif wejust want to read a global variableinside a function, Python simply looks
for the name locally, and not finding it will look globally (and if need be at the built-in namespace
too). The problem arises when we want to assign a value to a global variable. That would normally
create anew local variable inside the function. So, how can we assign avalue to aglobal variable
without creating alocal variable of the same name? We can achieve this by use of the

gl obal keyword:

var = 42

def nodd obal ():
gl obal var # prevent creation of a local var
var = var - 21

D:\DOC\HomePagell 2p\tutname htm Page 135

Namespaces 12/04/2010

def nodLocal ():

var = 101
print(var) # prints 42
nodd obal ()
print(var) # prints 21
nodLocal ()
print(var) # still prints 21

Here we see the global variable being changed by the modd obal function but not changed by the
modLocal function. Thelatter simply created its own internal variable and assigned it avalue. At the
end of the function that variable was garbage collected and its existence was unseen at the module
leve.

In genera you should minimize the use of 'global’ statements, it's usually better to pass the variablein
as a parameter and then return the modified variable. Hereis the nod@ obal function above rewritten
toavoid using agl obal statement:

var = 42
def nodd obal (aVari abl e):
return avVariable - 21

print(var)
var = nodd obal (var)
print(var)

In this case we assign the return value from the function to the original variable while also passing it in
as an argument. The result is the same but the function now has no dependencies on any code outside
itself - this makes it much easier to reusein other programs. It also makes it much easier to see how
the global value gets changed - we can see the explicit assignment taking place.

We can see dll of this at work in this example (which does nothing very useful, it is purely about
illustrating the points made so far!):

variables with nodul e scope

W= 5

Y =3

#paraneters are |like function variables
#so0 X has | ocal scope

def spam(X):

#tell function to | ook at nodul e | evel and not create its own W
gl obal W

Z = X*2 # new variable Z created with | ocal scope
W= X+5 # use nodule Was instructed above

if Z>W
pow is a 'builtin-scope' nanme
print(pow(zZ, W)
return Z
el se:
return Y # no local Y so uses nodul e version

print("WY =", W Y)
for nin[2,4,6]:

D:\DOC\HomePagell 2p\tutname htm Page 136

Namespaces 12/04/2010

print("Spam(%) returned: " %n, span(n))
print("WY =", W Y)

VBScript

VBScript takes afairly straightforward approach to scoping rules: if avariableis outside a function or
subroutine then it is globally visible, if avariableisinside afunction or subroutineit islocal to that
module. The programmer is responsible for managing all naming conflicts that might arise. Because all
VBScript variables are created using the Di mstatement there is never any ambiguity about which
variable is meant as is the case with Python.

There are some slight twists that are unique to web pages, namely that regardless of <scri pt > tag
boundaries global variables are visible across an entirefile, not just within the<scri pt > tag in which
they are defined.

Wewill illustrate those points in the following code:

<script type="text/vbscript">
D m aVari abl e
Di m anot her

aVariable = "This is global in scope"
another = "A d obal can be visible froma function"
</script>

<script type="text/vbscript">
Sub aSubrouti ne
Dim aVari abl e
aVari able = "Defined within a subroutine"
MsgBox aVari abl e
MsgBox anot her
End Sub
</script>

<script type="text/vbscript">
MsgBox aVari abl e

aSubrouti ne

MsgBox aVari abl e

</script>

There are a couple of extra scoping features in VBScript that allow you to make variables accessible
across files on aweb page (e.g from an index frame to a content frame and vice-versa). However we
won't be going into that level of web page programming here so I'll simply aert you to the existence
of thePubl i ¢ and Pri vat e keywords.

And JavaScript too

JavaScript follows much the same rules, variables declared inside a function are only visible within the
function. Variables outside a function can be seen inside the function as well as by code on the
outside. As with VBScript there are no conflicts as to which variable is intended because variables are
explicitly created with thevar statement.

Hereis the equivaent example as above but written in JavaScript:

<script type="text/javascript">
var aVariable, another; // global variables

D:\DOC\HomePagell 2p\tutname htm Page 137

Namespaces 12/04/2010

aVariable = "This is dobal in scope
";
another = "A gl obal variable can be seen inside a functi on
";

function aSubroutine()({
var aVari abl e; /1 local variable
avVariable = "Defined within a functi on
";
docunent . wite(aVvariabl e);
docunent . wite(anot her);

}

docunent . wite(aVvariabl e);
aSubroutine();
docunent . wite(aVvariabl e);

</script>

This should, by now, be straightforward.
Thingsto Remember

* Scoping and Namespaces are different terms for the same thing.

* The concepts are the same in every language but the precise rules can vary.

* Python has 5 scopes - class, nested, file (global), function (local) and built-in. Thelast 3 are
the most significant in everyday programming.

* VBScript and JavaScript each have 2 scopes - file (global) and function (local).

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePagell 2p\tutname htm Page 138

Regular Expressions 12/04/2010

Regular Expressions

What will we cover?

* What regular expressions are
* How to useregular expressions in Python programs
* Regex support in JavaScript and VB Script

Definition

Regular expressions are groups of characters that describe alarger group of characters. They describe
a pattern of characters for which we can search in a body of text. They are very similar to the concept
of wild cards used in file naming on most operating systems, whereby an asterisk(*) can be used to
represent any sequence of charactersin afile name. So*. py meansany fileendingin . py. In fact
filename wild-cards are a very small subset of regular expressions.

Regular expressions are extremely powerful tools and most modern programming languages either
have built in support for using regular expressions or have libraries or modules available that you can
use to search for and replace text based on regular expressions. A full description of themis outside
the scope of this tutor, indeed thereis at |east one whole book dedicated to regular expressions and if
your interest is roused | recommend that you investigate the O'Reilly book.

Oneinteresting feature of regular expressions is that they manifest similarities of structure to
programs. Regular expressions are patterns constructed from smaller units. These units are:

® single characters

* wildcard characters

¢ character ranges or sets and

¢ groups which are surrounded by parentheses.

Note that because groups are a unit, so you can have groups of groups and so on to an arbitrary level
of complexity. We can combine these units in ways reminiscent of a programming language using
sequences, repetitions or conditional operators. We'll 1ook at each of these in turn. So that we can try
out the examples you will need to import the r e module and use it's methods. For convenience | will
assume you have already imported r e in most of the examples shown.

Sequences

As ever, the simplest construct is a sequence and the simplest regular expression is just a sequence of
characters:

red

Thiswill match, or find, any occurrence of thethreeletters‘ r’ , " e’ and*‘ d’ in order, in astring.
Thus the words red, lettered and credible would all be found because they contain ‘red’ within them.
To provide greater control over the outcome of matches we can supply some special characters
(known as metacharacters) to limit the scope of the search:

M etacharacters used in sequences

Expression Meaning Example
~red only at the start of aline red ribbons are good

D:\DOC\HomePage\l 2p\tutregex.htm Page 139

Regular Expressions 12/04/2010

red$ only at theend of aline | lovered

\Wred only at the start of aword it’s redirected by post
red\wW only at the end of aword you covered it already

The metacharacters above are known as anchors because they fix the position of the regular
expression within a sentence or word. There are several other anchors defined in ther e module
documentation which we don’t cover in this topic.

Sequences can aso contain wildcard characters that can substitute for any character. The wildcard
character isaperiod. Try this:

>>> jnport re

>>> re.match(' be.t', 'best')
<_sre. SRE_Mat ch object at 0x01365AA0>
>>> re.match(' be.t', 'bess')

The message in angle brackets tells us that the regular expression “ be. t’ , passed as the first
argument matches the string * best’ passed as the second argument. * be. t * will also match ‘beat’,
‘bent’, ‘belt’, etc. The second example did not match because' bess' didn'tendint, sono
MatchODbject was created. Try out a few more matches to see how this works. (Note that

mat ch() only matches at the front of a string, not in the middle, we can usesear ch() for that, as
we shall seelater!)

The next unit isarange or set. This consists of a collection of |etters enclosed in square brackets and
the regular expression will search for any one of the enclosed |etters.

>>> re.match('s[pw]anm, 'spam)
<_sre. SRE_Mat ch object at 0x01365AD8>

This would aso match 'swam' or 'slam’ but not 'sham’ since 'h' is not included in the regular expression
Set.

By putting a” sign as thefirst e ement of the group we can say that it should ook for any character
except those listed, thus in this example:

>>> re.match(' [~*f]ool', 'cool")
<_sre. SRE_Mat ch object at 0x01365AA0>
>>> re.match(' [~f]ool', ' fool")

we can match ‘cool’ and ‘pool’ but we will not match ‘fool’ since we are looking for any character
except 'f' at the beginning of the pattern.

Finally we can group sequences of characters, or other units, together by enclosing themin

parentheses, which is not particularly useful inisolation but is useful when combined with the
repetition and conditional features we look at next.

Repetition
We can also create regular expressions which match repeated sequences of characters by using some

more special characters. We can look for a repetition of a single character or group of characters
using the following metacharacters:

D:\DOC\HomePage\l 2p\tutregex.htm Page 140

Regular Expressions 12/04/2010

M etacharactersused in repetition

Expression Meaning Example
zero or one of the preceding character. Note pythonl?y matches:
‘7 the zero part there since that can trip you up pythony
if you aren’t careful. pythonly
pythonl*y matches both of the above, plus:
e looks for zero or more of the preceding pythonlly
character. pythonllly
€tc.
pythonl+y matches:
i looks for one or more of the preceding pythonly
+ pythonlly
character.
pythonllly
€tc.
looks for n to m repetitions of the preceding fo{ 1,2} matches:
{nm}
character. fo or foo

All of these repetition characters can be applied to groups of characters too. Thus:

>>> re.match(' (.an){1,2}s', 'cans')
<_sre. SRE_Mat ch object at 0x013667E0>

The same pattern will also match: ‘cancans’ or ‘pans’ or ‘canpans but not ‘bananas’ sincethereis no
character before the second 'an’ group. (How could we modify the search to work with bananas as
well? Hint: Look at the other repeat specifiers - and don't forget the extra'a at the end of bananas)

Thereis one caveat with the {m n} form of repetition which is that it does not limit the match to only
n units. Thus the example in the table above, f o{ 1, 2} will successfully match f ooo becauseit
meatches the f oo at the beginning of f ooo. Thusif you want to limit how many characters are
matched you need to follow the multiplying expression with an anchor or a negated range. In our case
fo{1, 2}[~o] would prevent f ooo from matching sinceit says match 1 or 2 ‘0’s followed by
anything other than an ‘0’ - but, it must be followed by something, so now 'foo' doesn't match! This
illustrates the fickle nature of regular expressions. They can be very difficult to get just right and you
need to be very careful to test them thoroughly! The actual pattern needed to allow 'foo’, and 'foobar'
but not 'fooo' is. ' fo{1, 2} [0] *$' . That is, 'fo’ or 'foo’ followed by zero or more non o's and the
end of theline. (In fact even thisis not completely fool proof, but we need to cover afew more
elements before we can really nail itl)

Greedy expressions

Regular expressions are said to be greedy. What that means is that the matching and searching
functions will match as much as possible of the string rather than stopping at the first compl ete match.
Normally this doesn’t matter too much but when you combine wildcards with repetition operators you
can wind up grabbing more than you expect.

Consider the following example. If we have aregular expression like a. * b that says we want to find
an a followed by any number of characters up to ab then the match function will search from thefirst
atothelast b. That isto say that if the searched string includes more than one'b' all but the last one
will beincluded inthe. * part of the expression. Thus in this example:

D:\DOC\HomePage\l 2p\tutregex.htm Page 141

Regular Expressions 12/04/2010

re.match('a.*b',’ abracadabra')

The MatchObject has matched all of abr acadab. Not just thefirst ab. This greedy matching
behaviour is one of the most common errors made by new users of regular expressions.

To prevent this ‘greedy’ behaviour simply add a“? after the repition character, like so:

re.match('a.*?b'," abracadabra')

which will now only match *ab’.

Conditionals

Thefina pieceinthejigsaw is to make the regular expression search for optional € ements or to select
one of several patterns. We'll look at each of these options separately:

Optional elements

Y ou can specify that a character is optional using the zero or more repetition metacharacters:

>>> re. match(' conputer?d?' , 'conputer')
<re. Mat chObj ect instance at 864890>

will match conput e, conput er or conput ed. However, it will also match conput er d, which we
don’'t want.

By using a range within the expression we can be more specific. Thus:

>>> re.match(' conpute[rd]$',' conputer')
<re. Mat chCbj ect instance at 874390>

will sdect only conput er and conput ed but regject the unwanted conput er d.

And if we add a ? after the range we can aso allow conput e to be seected but still avoid
comput erd.

Optional Expressions

In addition to matching options from alist of characters we can also match based on a choice of
sub-expressions. We mentioned earlier that we could group sequences of characters in parentheses,
but in fact we can group any arbitrary regular expression in parentheses and treat it as a unit. In
describing the syntax | will use the notation (RE) to indicate any such regular expression grouping.

The situation we want to examine here is the case whereby we want to match a regular expression
containing (RE) xxxx or (RE) yyyy where xxxx andyyyy are different patterns. Thus, for example
we want to match both pr emat ur e and pr event at i ve. We can do this by using a selection
metacharacter (]):

>>> regexp = 'pre(nmature|ventative)'
>>> re. match(regexp, ' prenature')

<re. Mat chCbj ect instance at 864890>
>>> re. match(regexp,' preventative')
<re. Mat chCbj ect instance at 864890>

D:\DOC\HomePage\l 2p\tutregex.htm Page 142

Regular Expressions 12/04/2010

>>> re. mat ch(regexp, ' prel ude')

Notice that when defining the regular expression we had to include the full text of both options inside
the parentheses, rather than just (e| v) otherwise the option would have been restricted to

premat ur eent ati ve or premat ur vent at i ve. In other words only the letters e and v would have
formed the options not the full length groups.

Now, using this technique we can come back to the example above where we want to capture 'fo’ or
'foo’ but not 'fooo’ plus whatever comes after. We left it with aregular expression consisting of:
fo{1, 2}[~o] *$. The problem with this oneisthat if the string following the 'fo’ or 'foo’ contains an
'0' the match fails. By using a choice of expressions we can get round that. We want the match to
work where our pattern is either the end of the line or followed by any non '0’ character. That |ooks
like fo{1, 2} ($| [”0]) . And that finally gives us what we wanted. Remember, when using regul ar
expressions, always test thoroughly to ensure you are not catching more than you want, and are
catching all that you want.

A Few Extras

The r e module has many features which we don't discuss here so it is worth studying the module
documentation. One area |'d like to draw to your attention is the set of flags that you can use when
compiling expressions with the re.compil&() function. These flags control things like whether the
pattern matches across lines, or ignores case etc.

Another feature that you can find in the standard Python distribution is a regular expression testing
tool. It allows you to type in an expression then try different values against it to seeif they match.
You canfind thisinthe Tool s/ Scri pt s folder and thefileisr edeno. py. Unfortunately thereis a
small bug in the version that ships with Python v3.1. The import statement at the top needs to be
changed from

from TKi nter inmport *

to

fromtkinter inmport *

If you make that small change it should work fine, and by the time you read this it should have been
fixed in the distribution too. Have fun!

Using Regular Expressionsin Python.

WEe ve seen alittle of what regular expressions look like but what can we do with them? And how do
we do it in Python? To take thefirst point first, we can use them as very powerful search toolsin text.
We can look for lots of different variations of text strings in a single operation, we can even search for
non printabl e characters such as blank lines using some of the metacharacters available. We can aso
replace these patterns using the methods and functions of the re module. We' ve already seen the

mat ch() function at work, there are several other functions, some of which are described bel ow:

re Module functions and methods

Function/M ethod Effect
match(RE,string) if RE matches the start of the string it returns a match object

D:\DOC\HomePage\l 2p\tutregex.htm Page 143

Regular Expressions 12/04/2010

search(RE,string) if RE is found anywhere within the string a match object is returned
split(RE, string) like string.split() but uses the RE as a separator

returns a string produced by substituting replace for re at the first matching
sub(RE, replace, string) occurrence of RE. Note this function has several additional features, seethe
documentation for details.

findall(RE, string) Finds all occurrences of RE in string, returning a list of match objects

produces a regular expression object which can be reused for multiple
compile(RE) operations with the same RE. The object has al of the above methods but
with an implied re and is more efficient than using the function versions.

Note that thisis not afull list of re's methods and functions and that those listed have some optional
parameters that can extend their use. The listed functions are the most commonly used operations and
are sufficient for most needs.

A Practical Example Using Regular Expressions

As an example of how we might use regular expressions in Python let’s create a program that will
search an HTML filefor an IMG tag that has no ALT section. If we find one we will add a message
to the owner to create more user friendly HTML in future!

i mport re

detect '"IM5 in upper/lower case allow ng for
zero or nore spaces between the < and the "I’

img ="'<*[il][mM][gF

all ow any character up to the "ALT' or 'alt' before >
alt =ing + ' .*[aAl[IL][tT].*>

open file and read it into Iist

filename = input(' Enter a filenane to search ")
inf = open(filenane,'r")

lines = inf.readlines()

#if the line has an MG tag and no ALT inside
add our nessage as an HTML comrent
for i in range(len(lines)):
if (re.search(ing,lines[i]) and not
re.search(alt,lines[i])):
lines[i] += '<!-- PROVIDE ALT TAGS ON | MAGES! -->\n'

Now wite the altered file and tidy up.
i nf.close()

outf = open(filenane,' W)
outf.writelines(lines)

outf.close()

Notice two points about the above code. First we use re.search instead of re.match because

sear ch finds the patterns anywhere in the string whereas nat ch only looks at the start of the string.
Secondly we put an outer pair of parentheses around the two tests. These are not strictly necessary
but they alow us to break the test into two lines which are easier to read, especially if there are many
expressions to be combined.

D:\DOC\HomePage\l 2p\tutregex.htm Page 144

Regular Expressions 12/04/2010

This code is far from perfect because it doesn’'t consider the case where the IMG tag may be split over
several lines, but it illustrates the technique well enough for our purposes. Of course such wanton
vandalism of HTML files shouldn’t really be encouraged, but then again anyone who doesn’t provide
ALT tags probably deserves all they get!

Finally, regular expressions have limitations and for formally defined data structures, like HTML,
there are often other tools, known as parsers that are more effective, reliable, and easier to use
correctly, than regular expressions. But for complex searches in free text regular expressions can
solve alot of problems. Just be sure to test thoroughly.

WEe'll seeregular expressions at work again in the Grammar Counter case study, meantime
experiment with them and check out the other methods in the re module. We really have just
scratched the surface of what’s possible using these powerful text processing tools.

JavaScript

JavaScript has good support for regular expressions built into the language. In fact the string search
operations we used earlier are actually regular expression searches, we simply used the most basic
form - a simple sequence of characters. All of the rules we discussed for Python apply equally to
Javascript except that regular expressions are surrounded in slashes(/) instead of quotes. Here are
some examples to illustrate their use:

<Script type="text/javascript">
var str = "A lovely bunch of bananas”;
docunent.wite(str + "
");
if (str.match(/*"A)) {
docunent.wite("Found string beginning with A
");

}
if (str.match(/b[au]/)) {
docunent . wite("Found substring with either ba or bu
");

}
if (!str.match(/zzz/)) {
docunent.wite("Didn't find substring zzz!
");

}

</ Script>

Thefirst two succeed the third doesn't, hence the negative test.
VBScript

VB Script does not have built in regular expressions like JavaScript but it does have a Regular
Expression object that can be instantiated and used for searches, replacement etc. It can also be
controlled to ignore case and to search for all instances or just one. It is used like this:

<Script type="text/vbscript">
Di m regex, matches
Set regex = New RegExp

regex. @ obal = True
regex. Pattern = "b[au]"

Set matches = regex. Execute("A | ovely bunch of bananas")
If matches. Count > 0 Then
MsgBox "Found " & matches. Count & " substrings”
End If
</ Scri pt>

D:\DOC\HomePage\l 2p\tutregex.htm Page 145

Regular Expressions 12/04/2010

That's al I'll cover here but there is awealth of subtle sophistication in regular expressions, we have
literally just touched on their power in this short topic. Fortunately thereis al'so a wealth of online
information about their use, plus the excellent O'Reilly book mentioned at the start. My adviceisto
takeit slowly and get accustomed to their vagaries as well as their virtues.

Pointsto remember

* Regular expressions are text patterns which can improve the power and efficiency of text
searches

* Regular expressions are notoriously difficult to get right and can lead to obscure bugs -
handle with care.

* Regular Expressions are not a cure al and often a more sophisticated approach may be
needed, if it doesn't work after say 3 attempts consider another approach!

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutregex.htm Page 146

Classss 12/04/2010
Object Oriented Programming

What will we cover?
What is an object?
What is a Class?
What are polymorphism and inheritance?
Creating, Storing and using objects

What is Object Oriented Programming?

Now we move onto what might have been termed an advanced topic up until about 10 years ago.
Nowadays 'Object Oriented Programming has become the norm. Languages like Java and Python
embody the concept so much that you can do very little without coming across objects somewhere.
Sowhat's it al about?

The best introductions are, in my opinion:

¢ Object Oriented Analysis by Peter Coad & Ed Y ourdon.

¢ Object Oriented Analysis and Design with Applications by Grady Booch (the 1st edition if
you can find it)

¢ Object Oriented Software Construction by Bertrand Meyer (definitely the 2nd edition of this
one)

Theseincrease in depth, size and academic exactitude as you go down the list. For most
non-professional programmers' purposes the first is adequate. For a more programming focused
introduction try Object Oriented Programming by Timothy Budd(2nd edition). This uses severa
languages to illustrate object oriented programming techniques. It is much more strongly oriented
towards writing programs than any of the other books which cover the whole gamut of theory and
principle behind object orientation, at the design level as well as at the code leve. Finally for awhole
heap of info on all topics OO try the Web link site at: http://www.cetus-links.org

Assuming you don't have the time nor the inclination to research al these books and links right now,
I'll giveyou a brief overview of the concept. (Note: Some people find OO hard to grasp others 'get it'
right away. Don't worry if you come under the former category, you can still use objects even without
really 'seeing the light'.)

Onefinal point: it is possible to implement an Object Oriented design in a non OO language through
coding conventions, but it's usually an option of last resort rather than a recommended strategy. If
your problem fits well with OO techniques then it's best to use an OO language. Most modern
languages, including Python, VB Script and JavaScript support OOP quite well. That having been said
| will be using Python throughout all the examples and only showing the basic concepts in VB Script
and JavaScript with little additional explanation.

Data and Function - together

Objects are collections of data and functions that operate on that data. These are bound together so
that you can pass an object from one part of your program and they automatically get access to not
only the data attributes but the operations that are available too. This combining of data and function
is the very essence of Object Oriented Programming and is known as encapsulation. (Some

D:\DOC\HomePage\l 2p\tutcl ass.htm Page 147

Classes 12/04/2010

programming languages make the data invisible to users of the object and thus require that the data be
accessed via the object's methods. This techniqueis properly known as data hiding, however in some
texts data hiding and encapsulation are used interchangeably.)

As an example of encapsulation, a string object would store the character string but also provide
methods to operate on that string - search, change case, calculate length etc.

Objects use a message passing metaphor whereby one object passes a message to another object and
the receiving object responds by executing one of its operations, a method. So a method is

invoked on receipt of the corresponding message by the owning object. There are various notations
used to represent this but the most common mimics the access to items in modules - adot. Thus, for a
fictitious widget class:

w = Wdget () # create new instance, w, of wi dget
w.paint() # send the nessage 'paint' to it

This would cause the paint method of the widget object to be invoked.
Defining Classes

Just as data has various types so objects can have different types. These collections of objects with
identical characteristics are collectively known as a class. We can define classes and create

instances of them, which are the actual objects. We can store references to these objects in variables
in our programs.

Let'slook at a concrete example to seeif we can explain it better. We will create a message class that
contains a string - the message text - and a method to print the message.

cl ass Message:
def _ init_ (self, aString):
self.text = aString
def printlt(self):
print(self.text)

Note 1:One of the methods of thisclassiscaled _ init__ anditisaspecia method called a
constructor. The reason for the nameisthat it is called when a new object instanceis created or
constructed. Any variables assigned (and hence created in Python) inside this method will be unique to
the new instance. There are a number of special methods like this in Python, nearly all distinguished by
the __ xxx__ naming format. The exact timing of when a constructor is called varies between
languages, in Pythoni ni t gets called after the instance has actually been created in memory, in other
languages the constructor actually returms the instance itself. The difference is sufficiently subtle that
you don't usually need to worry about it.

Note 2:Both the methods defined have a first parameter sel f . The nameis a convention but it
indicates the object instance. As wewill soon seethis parameter isfilled in by the interpreter at
run-time, not by the programmer. Thuspri nt I t iscalled, on an instance of the class (see below),
with no arguments. m printlt().

Note 3:Wecdled theclass Message with acapital 'M'. Thisis purely convention, but it isfairly
widdy used, not just in Python but in other OO languages too. A related convention says that method
names should begin with a lowercase | etter and subsequent words in the name begin with uppercase
letters. Thus a method called "cal culate current balance" would be written:

cal cul at eCurrent Bal ance.

D:\DOC\HomePage\l 2p\tutcl ass.htm Page 148

Classes 12/04/2010

Y ou may want to briefly revisit the 'Raw Materials section and ook again at 'user defined types. The
Python address example should be a little clearer now. Essentially the only kind of user-defined type
in Pythonisaclass. A class with attributes but no methods (except __init__) iseffectively
equivalent to a construct called ar ecor d or st r uct in some programming languages..

A Graphical Notation

The software engineering community have adopted a graphical notation for describing classes and
objects and their relationships to each other. This notation is called the Unified Modelling
Language (or UML) and is a powerful design tool. In total UML contains many diagrams and icons
but we will only look at a few here that may help you grasp the concepts.

The first and most important icon we meet in UML is the class description, it consists of a box with
three compartments. The top compartment contains the class name, the middle compartment contains

the class attributes, or data, and the bottom compartment contains the methods, or functions, of the
class.

Iessage
test

The Message class defined above would look like this:

_ it
printlt

We will show other UML icons as we devel op the topic and introduce new concepts supported by
the notation.

Using Classes

Having defined a class we can now create instances of our Message class and mani pul ate them:

mi
n2

Message("Hell o worl d")
Message("So long, it was short but sweet")

note = [ml, n2] # put the objects in a |ist
for nsg in note:
nmsg. printlt() # print each nessage in turn

So in essence you just treat the class asif it was a standard Python data type, which was after al the
purpose of the exercise!

UML also has anicon for an object or instance. It is the same as the class icon, except we usually
leave the bottom two boxes blank. The name is made up of the object or instance name followed by
the class name with a colon in between. Thus nil: Message tdls usthat il is an instance of the
Message class.

Our message example would be drawn like this:

D:\DOC\HomePage\l 2p\tutclass.htm Page 149

Classes 12/04/2010

ml: Message

myProg Program

printlt -
note: List / — <<utility==
<<huiltin =

tmd: Wessage

printlt

Note that the Li st class represents the normal Python list type (as indicated by the word

bui | ti n being within angle brackets, a construct known as a stereotype in UML). The lines with
diamonds indicate that the list contains the Message objects. The MyPr og object likewiseis
stereotyped as being a utility class, which means, in this case, that it does not exist as a class within
the program but is a product of the environment. (Operating system facilities are often shown this
way, as are libraries of functions.) The solid lines from nmy Pr og to Message indicate that the

myPr og "object” has an association with, or reference to, the Message objects. The arrows adjacent
to these lines indicate that the my Pr og "object” sendsthe pri nt I t message to each of the

Message objects. In effect object messages are transmitted via associ ations.

What is" sdf" ?

No, it's not a philosophical debate, it's one of the questions most often asked by new Python OOP
programmers. Every method definition in a class in Python starts with a parameter called self. The
actual namesel f isjust aconvention, but like many programming conventions consistency is good
so let's stick with it! (Asyou'll see later JavaScript has a similar concept but uses the name

t hi s instead.)

Sowhat issel f al about? Why do we need it?

Basically sdf isjust areference to the current instance. When you creste an instance of the class the
instance contains its own data (as created by the constructor) but not of the methods. Thus when we
send a message to an instance and it calls the corresponding method, it does so via an interna
reference to the class. It passes areference to itself (self!) to the method so that the class code knows
which instance to use.

Let'slook at ardatively familiar example. Consider a GUI application which has lots of Button
objects. When a user presses a button the method associated with a button press is activated - but
how does the Button method know which of the buttons has been pressed? The answer is by referring
to the self value which will be areference to the actual button instance that was pressed. We'll seethis
in practice when we get to the GUI topic alittle | ater.

So what happens when a message is sent to an object? It works likethis:

* theclient code calls the instance (sending the message in OOP speak).

¢ Theinstance calls the class method, passing areference to itself (sef).

* The class method then uses the passed reference to pick up the instance data for the receiving
object.

D:\DOC\HomePage\l 2p\tutclass.htm Page 150

Classes 12/04/2010

You can see thisin action in this code sequence, notice that we can explicitly call the class method, as
wedointhelast line

>>> ¢l ass C

def __init_ (self, val): self.val = val
def f(self): print "hello, nmy value is:", self.val
>>> # create two instances
>>> a = C(27)
>>> b = C(42)
>>> # first try sending nessages to the instances
>>> a. f()
hello, ny value is 27
>>> pb.f()

hello, ny value is 42

>>> # now call the nethod explicitly via the class
>>> C.f(a)

hello, ny value is 27

S0 you see we can call the methods via the instance, in which case Python fills in the self parameter
for us, or explicitly viathe class, in which case we need to pass the salf value explicitly.

Now you might be wondering why, if Python can provide the invisible reference between the instance
and its class can't Python also magically fill in the sdf by itsdf? The answer is that Guido van Rossum
designed it this way! Many OOP languages do indeed hide the self parameter, but one of the guiding
principles of Python is that "explicit is better than implicit”. Y ou soon get used to it and after awhile
not doing it seems strange.

Samething, Different thing

What we have so far is the ability to define our own types (classes) and create instances of these and
assign them to variables. We can then pass messages to these objects which trigger the methods we

have defined. But there's one last é ement to this OO stuff, and in many ways it's the most important
aspect of all.

If we have two objects of different classes but which support the same set of messages but with their
own corresponding methods then we can collect these objects together and treat them identically in
our program but the objects will behave differently. This ability to behave differently to the same input
messages is known as polymor phism.

Typically this could be used to get a number of different graphics objects to draw themsel ves on
receipt of a'paint’ message. A circle draws a very different shape from a triangle but provided they
both have a paint method we, as programmers, can ignore the difference and just think of them as
‘shapes.

Let'slook at an example, where instead of drawing shapes we calculate their areas:

First we create Square and Circle classes:

cl ass Square:
def __init__(self, side):
sel f.side = side
def cal cul ateArea(self):
return self.side**2

D:\DOC\HomePage\l 2p\tutclass.htm Page 151

Classes 12/04/2010

class Circle:
def __init__(self, radius):
sel f.radi us = radius
def cal cul ateArea(self):
i mport math
return math. pi *(sel f.radi us**2)

Now we can create a list of shapes (either circles or squares) and then print out their areas:

shapes = [Circle(5),Circle(7),Square(9),C rcle(3), Square(12)]

for itemin shapes:
print "The area is: ", itemcal cul ateArea()

Now if we combine these ideas with modules we get a very powerful mechanism for reusing code. Put
the class definitions in a module - say 'shapes.py' and then simply import that module when we want to
manipul ate shapes. This is exactly what has been done with many of the standard Python modules,
which is why accessing methods of an object looks alot like using functions in a module.

- Bguate -q...‘ﬂﬂlia_%a

myProg Program

: ™ < <tility==
shapes: List Souare Aﬁ e
<<huiltins> e st
K : ercle

: Circle

‘\&EA ea
 Clircle >
e
w

Here we see a more complex object diagram. Notice that in this case the objects within the list do not
have names because we did not explicitly create variables for them. In this case we just show a blank
before the colon and class name. However, the diagram is starting to get very busy. For this reason
we only draw object diagrams when necessary to illustrate some unusual feature of the design.
Instead we use more sophisticated features of class diagrams to show the relationships, as well seein
the exampl es bel ow.

Inheritance

Inheritance is often used as a mechanism to implement polymorphism. Indeed in many OO languages
it is the only way to implement polymorphism. It works as follows:

D:\DOC\HomePage\l 2p\tutclass.htm Page 152

Classes 12/04/2010

A class can inherit both attributes and operations from a parent or super class. This means that a new
classwhichisidentical to another class in most respects does not need to re-implement all the
methods of the existing class, rather it can inherit those capabilities and then override those that it
wants to do differently (likethe cal cul at eAr ea method in the case above)

Again an example might illustrate this best. We will usea class hierarchy of bank accounts where we
can deposit cash, obtain the balance and make a withdrawal. Some of the accounts provide interest
(which, for our purposes, welll assumeis calculated on every deposit - an interesting innovation to the
banking world!) and others charge fees for withdrawals.

The BankAccount class

Let's see how that might look. First Iet's consider the attributes and operations of a bank account at
the most general (or abstract) levd.

It's usually best to consider the operations first then provide attributes as needed to support these
operations. So for a bank account we can:

* Deposit cash,

* Withdraw cash,

® Check current balance and

* Transfer funds to another account.

To support these operations we will need a bank account 1D (for the transfer operation) and the
current balance. In this example we will just use the variable to which we assign the object, but in a
more general case we would likely create an 1D attribute which stored a unique reference. We will
also need to store the balance.

Banlcd ccount
halatice

In UML that would ook like: |deposit
withdraw
checlBalance
transfer

We can now create a class to support that:

first create a custom exception cl ass
cl ass Bal anceError (Exception):

value = "Sorry you only have $%.2f in your account”
cl ass BankAccount:
def __init__(self, initial Anmount):
sel f. bal ance = initial Anount

print("Account created with bal ance 9. 2f" % sel f. bal ance)

def deposit(self, anount):
sel f. bal ance = sel f. bal ance + amount

def w thdraw(sel f, anpunt):
i f self.balance >= anpunt:
sel f. bal ance = sel f. bal ance - amount
el se:
rai se Bal anceError(Bal anceError.value % sel f. bal ance)

def checkBal ance(sel f):
return sel f. bal ance

D:\DOC\HomePage\l 2p\tutclass.htm Page 153

Classes 12/04/2010

def transfer(self, anmount, account):
try:
sel f.wi t hdraw anount)
account . deposi t (anmount)
except Bal anceError:
print(Bal anceError.val ue % sel f. bal ance)

Note 1. We check the balance before withdrawing and also use an exception to handle errors. Of
course there is no Python error type Bal anceEr r or so we needed to create one of our own - it's
simply an subclass of the standard Except i on class with astring value. The string val ue is defined
as an attribute of the exception class purdy as a convenience, it ensures that we can generate standard
error messages every timeweraise an error. When wer ai se Bal anceError we pass the internal
format string val ue filled in with the current value of the object's bal ance. Notice that we didn't use
sel f when defining the valuein Bal anceEr r or, that's because val ue is ashared attribute across all
instances, it is defined at the class level and known as a class variable. We access it by using the class
name followed by a dot: Bal anceEr r or . val ue as seen above. Now, when the error generates its
traceback it concludes by printing out the formatted error string showing the current balance.

Note 2: Thet r ansf er method uses the BankAccount's wi t hdr aw deposi t member

functions or methods to do the transfer. Thisis very common in OO and is known as self messaging.
It means that derived classes can implement their own versions of deposi t / wi t hdr aw but the

t ransf er method can remain the same for all account types.

OK, now that we have defined our BankAccount as abase class we can get back to inheritance
which iswhat we are supposed to be discussing! Let's look at our first sub class>.

The InterestAccount class

Now we use inheritance to provide an account that adds interest (we'll assume a default of 3%) on
every deposit. It will beidentical to the standard BankAccount class except for the deposit method
and the initialisation of the interest rate. So we simply override those:

cl ass | nterest Account (BankAccount):

def __init__(self, initial Armount, interest=0.03):
BankAccount. __init__(self, initial Amount)
self.interest = interest

def deposit(self, anount):
BankAccount . deposi t (sel f, amount)
sel f. bal ance = self.balance * (1 + self.interest)

Note that we call the BankAccount initiaisation method at the beginningof __i nit__() which
takes care of al theinitialisation of the super class for us, we just need to initialise the new

i nt er est attribute that we introduced here. Because we call it via the class (see the discussion of
"self" above) we need to explicitly include sel f as an argument.

And that's it. We begin to see the power of OOP, all the other methods have been inherited from
BankAccount (by putting BankAccount inside the parentheses after the new class name). Notice
that once again deposi t called the superclasssdeposi t method rather than copying the code. Now
if we modify the BankAccount deposit to include some kind of error checking the sub-class will gain
those changes automatically.

The ChargingAccount class

D:\DOC\HomePage\l 2p\tutcl ass.htm Page 14

Classes 12/04/2010

This account is again identical to a standard BankAccount class except that thistimeit charges a
default fee of $3 for every withdrawal. As for the | nt er est Account we can create a class inheriting
from BankAccount and modifying thei ni t and wi t hdr aw methods.

cl ass Char gi ngAccount (BankAccount):
def __init__(self, initial Anrount, fee=3):
BankAccount. __init__(self, initial Amount)
self.fee = fee

def withdraw(self, amount):
BankAccount . wi t hdraw(sel f, anount +sel f. fee)

Note 1: We store the fee as an instance variable so that we can changeiit later if necessary. Notice
that we again call theinherited __ i nit__ just like any other method.

Note 2: We simply add the fee to the requested withdrawal and call the
BankAccount . wi t hdr aw method to do the real work.

Note 3: We introduce a side effect herein that a charge is automatically levied on transfers too, but
that's probably what we want, so is OK.

In UML we represent inheritance with a solid arrow pointing from the sub class to the superclass.
We can now represent our bank account heirarchy likethis:
BankAccount

balance

deposit
withdraw
checkPalance
tratniafer

[

InterestAccount ChatgingAccount

ititerest fee

deposit withdrawr

Notice we only list the methods and attributes that have changed or been added in sub classes.
Testing our system

To check that it all works try executing the following piece of code (either at the Python prompt or by
creating a separate test file).

from bankaccount inport *

First a standard BankAccount
a = BankAccount (500)

b = BankAccount (200)

a.w t hdraw(100)

a.w t hdraw(1000)

D:\DOC\HomePage\l 2p\tutclass.htm Page 155

Classes 12/04/2010

a.transfer (100, b)
print("A =", a.checkBal ance())
print("B =", b.checkBal ance())

Now an | nt erest Account

c = Interest Account (1000)

c. deposi t (100)

print("C =", c.checkBal ance())

Then a Char gi ngAccount
d = Chargi ngAccount (300)
d. deposi t (200)

print("D =", d.checkBal ance())
d. wi t hdr aw(50)

print("D =", d.checkBal ance())
d.transfer (100, a)

print("A =", a.checkBal ance())
print("D =", d.checkBal ance())

Finally transfer from charging account to the interest one
The chargi ng one should charge and the interest one add
interest

print("C =", c.checkBal ance())
print("D =", d.checkBal ance())
d.transfer(20,c)

print("C =", c.checkBal ance())
print("D =", d.checkBal ance())

Now uncomment thelinea. wi t hdr awm(1000) to see the exception at work.

That's it. A reasonably straightforward example but it shows how inheritance can be used to quickly
extend a basic framework with powerful new features.

We've seen how we can build up the examplein stages and how we can put together a test program to
check it works. Our tests were not complete in that we didn't cover every case and there are more
checks we could have included - like what to do if an account is created with a negative amount...

Test Driven Development

Many professional programmers use a technique known as Test Driven Development (TDD) in
which they write their tests before they write their code. This may initially sound bizarre but it allows
them to test their code repeatedly as they develop it and move from a state where every test fails to
one where every test passes. At that point their program should work properly!

So popular is this that special tools have been devel oped to assist with this approach. Python has
severa such tools including the unittest module that is in the standard library. TDD is a good
approach when writing serious code however in the context of atutorial it would simply hide the
main code that we are trying to study amongst a mass of test cases so | won't be using it here. But its
a concept you might like to investigate once you start writing longer programs.

Collections of Objects

One problem that might have occurred to you is how we deal with lots of objects. Or how to manage
objects which we create at runtime. It's all very well creating bank accounts statically as we did above:

D:\DOC\HomePage\l 2p\tutclass.htm Page 156

Classes 12/04/2010

accl = BankAccount(...)
acc2 = BankAccount(...)
acc3 = BankAccount(...)
etc. ..

But in the real world we don't know in advance how many accounts we need to create. How do we
deal with this? Lets consider the problem in more detail:

We need some kind of 'database’ that allows us to find a given bank account by its owners name (or
more likely their bank account number - since one person can have many accounts and several persons
can have the same name...)

Finding something in a collection given a unique key....nmmm, sounds like a dictionary! Let's see how
we'd use a Python dictionary to hold dynamically created objects:

from bankaccount inmport BankAccount
i mport time

Create new function to generate unique id nunbers
def get Next!D():

ok = input("Create account[y/n]? ")

if ok[O] in 'yY : # check valid input

id=tinme.time() # use current tine as basis of ID
id=1int(id) % 10000 # convert to int and shorten to 4 digits
else: id =-1 # which will stop the |oop
return id

Let's create sone accounts and store themin a dictionary
accountData = {} # new dictionary

whil e True: # |l oop forever
id = getNextlD()
if id==-1:
br eak # break forces an exit fromthe while | oop
bal = float(input("Opening Balance? ")) # convert string to float

accountData[i d] = BankAccount(bal) # use id to create new dictionary entry
print("New account created, Nunber: 9%®4d, Bal ance 9%®.2f" % (id, bal))

Now |l et's access the accounts
for id in accountData. keys():
print("9®4d\t9®. 2f" % (id, accountData[id].checkBal ance()))

and find a particul ar one
Enter non-nunber to force exception and end program
whil e True:
id=int(input("Wich account nunber? "))
if idin accountData. keys():
print("Balance = %0.2d" % account Data[i d].checkBal ance())
el se: print("lnvalid ID")

Of course the key you use for the dictionary can be anything that uniquely identifies the object, it
could be one of its attributes, like bal ance say (except that balance would not be a very good unique
key!). Anything at all that is unique. Y ou might find it worthwhile going back to the raw

meaterials chapter and reading the dictionary section again, they really are very useful containers.

D:\DOC\HomePage\l 2p\tutcl ass.htm Page 157

Classes 12/04/2010

We can represent that graphically in UML using a class diagram. The dictionary is shown as a class

which has arelationship with many BankAccounts. This is shown by the asterisk on the line

connecting the classes. An asterisk is used because that is the symbol used in regular expressions to

indicate zero or Diictio ' S e/ —an be shown in
nary

anumber of Wa| < <huilt-in>> Bankfccount 4 pecause of

their richness an balance

I deposit

withdraw

checlBalance

transfer

Notice the use of a stereotype on the Di ct onary to show it is abuilt-in class. Notice also the box
attached to the association showing that the key isthe | D value. If we had been using asimplelist we
would not have had the box and the line would have directly connected the two classes. This use of
class relationships and cardinality is how we avoid the need for very large complex Object diagrams.
We can focus on the abstract rel ationships between classes rather than the myriad of physical
relationships between individual instances.

Saving Your Objects

One snag with al of thisisthat you lose your data when the program ends. Y ou need some way of
saving objects too. As you get more advanced you will learn how to use databases to do that but we
will look at using asimpletext file to save and retrieve objects. (If you are using Python there are a
couple of modules called Pickle and Shelve) that do this much more effectively but as usual I'll try to
show you the generic way to do it that will work in any language. Incidentally the technical term for
the ability to save and restore objects is Persistence.

The generic way to do thisisto create save and r est or e methods at the highest level object and
override in each class, such that they call the inherited version and then add their locally defined
attributes:

class A
def __init_ (self,x,y):
self.x = x
self.y =y

def save(self,fn):
f = open(fn,"w)
f.wite(str(self.x)+ "\n") # convert to a string and add new i ne
f.wite(str(self.y)+\n")
return f # for child objects to use

def restore(self, fn):
f = open(fn)

sel f.x int(f.readline(
e(

—

) # convert back to original type
)

self.y = int(f.readlin
return f
class B(A):
def __init_ (self,x,y,z):
A _init__(self,x,y)
self.z = z

def save(self,fn):
f = A save(self,fn) # call parent save
f.wite(str(self.z)+'\n")

D:\DOC\HomePage\l 2p\tutclass.htm Page 158

Classes 12/04/2010
return f # in case further children exist

def restore(self, fn):
f = A restore(self,fn)
self.z = int(f.readline())
return f

create instances
AL, 2)
B(3,4,5)

oo H*

save the instances
.save('a.txt').close() # renenber to close the file
.save('b.txt').close()

oo 3

retrieve instances

newA = A(5, 6)

newA restore('a.txt').close() # renmenber to close the file
newB = B(7,8,9)

newB. restore(' b.txt"').close()

print("A ", newA Xx,newAy)

print("B: ", newB.x, newB.y, newB. z)

Note: The values printed out are the restored val ues not the ones we used to creste the instances.

The key thing is to override the save/restore methods in each class and to call the parent method as
thefirst step. Then in the child class only deal with child class attributes. Obviously how you turn an
attribute into a string and saveit is up to you the programmer but it must be output on asingleline.
When restoring you simply reverse the storing process.

One big snag with this approach is that you need to create a separate file for each object. In aredl
world exampl e that could mean thousands of very small files. This quickly gets cumbersome and so
using a database to store the objects becomes necessary. We will ook at how to do that in alater
topic, but the basic principles remain the same.

Mixing Classes and Modules

Modules and classes both provide mechanisms for controlling the complexity of a program. It seems
reasonabl e that as programs get bigger we would want to combine these features by putting classes
into modules. Some authorities recommend putting each class into a separate module but | find this
simply creates an explosion of modules and increases rather than decreases complexity. Instead |
group classes together and put the group into a module. Thus in our example above | might put all the
bank account class definitions in one module, bankaccount , say, and then create a separate module
for the application code that uses the module.

We can represent that graphically in UML in two ways. The logical grouping of the classes can be
represented using a Package or we can represent the physical file as a component. The icons for
these are shown bel ow:

hatkaccount hanlaccount. py é

A& Paclaage A Component

D:\DOC\HomePage\l 2p\tutclass.htm Page 159

Classes 12/04/2010

Theintention is that the Package icon should look somewhat like afolder in atypical file explorer
tool. Thelittleicon at top right in the component icon is actually the old UML symbol for a
component but this was a bit cumbersome in diagrams when trying to draw lines showing

rel ationships between components so they demoted it to a small embellishment in UML 2.0

That's al the UML I'll be covering, if you find it interesting and a useful way to visualise your design
then a Google search will throw up lots of references and tutorials and you will find some UML
drawing tools too, although the shapes are sufficiently easy to draw that you can use just about any
vector graphics package.

A simplified representation of that design would be:

Fil e: bankaccount. py

#
I nplements a set of bank account classes
HEHHH R

cl ass BankAccount:
cl ass I nterest Account:

cl ass Char gi ngAccount:

And then to use it;

i mport bankaccount

newAccount = bankaccount. BankAccount (50)
newChr gAcct = bankaccount . Char gi ngAccount (200)

now do stuff

But what happens when we have two classes in different modules that need to access each others
details? The simplest way is to import both modules, create local instances of the classes we need and
pass the instances of one class to the other instance's methods. Passing whol e objects around is what
makes it object oriented programming. Y ou don't need to extract the attributes out of one object and
pass them into another, just pass the entire object. Now if the receiving object uses a polymorphic
message to get at the information it needs then the method will work with any kind of object that

supports the message.

Let's make that more concrete by looking at an example. Let's create a short module called

| ogger that contains two classes. Thefirst class, called Logger , logs activity in afile. Thislogger
will have asingle method | og() which takes a"loggable object” as a parameter. The other classin
our moduleisalLoggabl e class that can be inherited by other classes to work with the logger. It
looks like this:

File: |ogger.py

#

Create Loggabl e and Logger classes for logging activities
of objects

D:\DOC\HomePage\l 2p\tutclass.htm Page 160

Classes 12/04/2010
HHHHHBHHEHBHH

cl ass Loggabl e:
def activity(self):
return "This needs to be overridden |ocally"

cl ass Logger:
def __init__ (self, logfilename = "logger.dat"):
self. _log = open(logfil enane, "a")

def |og(self, |oggedj):
self. _log.wite(l oggedoj.activity() + '\n")

def _ del _ (self):
sel f. _log.close()

Note that we have provided a destructor method (__del _) to close the file when the logger object is
deleted or garbage collected. This is another "magic method" in Python (as shown by the double’
characters) similar inmany waysto __init__ ()

Also notice that we've called the log attribute | og witha' ' character in front of the name. Thisis
another common naming convention in Python, like using capitalized words for class names. A single
underscore indicates that the attribute is not intended to be accessed directly, but only via the methods
of the class.

Now before we can use our module we will create a new module which defines loggabl e versions of
our bank account classes:

File: |oggabl ebankaccount. py

#

Extend Bank account classes to work with | ogger nodul e.
HEHH

i nport bankaccount, | ogger

cl ass Loggabl eBankAccount (bankaccount . BankAccount, | ogger. Loggabl e):
def activity(self):
return "Account bal ance = %" % sel f.checkBal ance()

cl ass Loggabl el nt er est Account (bankaccount . | nt er est Account,
| ogger . Loggabl e):
def activity(self):
return "Account balance = %" % sel f.checkBal ance()

cl ass Loggabl eChar gi ngAccount (bankaccount . Char gi ngAccount,
| ogger . Loggabl e):
def activity(self):
return "Account balance = %" % sel f.checkBal ance()

Notice we are using a feature called multiple inheritance, where we inherit not one but two parent
classes. Thisisn't strictly needed in Python since we could just have added an act i vi t y() method to
our original classes and achieved the same effect but in statically typed OOP languages such as Java
or C++ this technique would be necessary so | will show you the technique here for future reference.

D:\DOC\HomePage\l 2p\tutclass.htm Page 161

Classes 12/04/2010

The sharp eyed amongst you may have noticed that theact i vi t y() methodin all threeclassesis
identical. That means we could save ourselves some typing by creating an intermediate type of
loggabl e account class that inherits Loggable and only has an activity method. We can then create our
three different loggable account types by inheriting from that new class as well as from the vanilla
Loggable dlass. Likethis:

cl ass Loggabl eAccount (I ogger. Loggabl e):
def activity(self):
return "Account balance = %" % sel f.checkBal ance()

cl ass Loggabl eBankAccount (bankaccount . BankAccount, Loggabl eAccount):
pass

cl ass Loggabl el nt er est Account (bankaccount . | nt erest Account, Loggabl eAccount):
pass

cl ass Loggabl eChar gi ngAccount (bankaccount . Char gi ngAccount, Loggabl eAccount):
pass

It doesn't save alot of code but it does mean we only have one method definition to test and maintain
instead of three identical methods. This type of programming, where we introduce a superclass with
shared functionality is sometimes called mixin programming and the minimal classis caled amixin
class. It is a common outcome of this style that the final class definitions have little or no body but a
long list of inherited classes, just as we see here. It's also quite common that mixin classes do not
themselves inherit from anything, although in this case we did. In essenceit's just away of adding a
common method (or set of methods) to a class or set of classes via the power of inheritance. (The
term mixin originates in the world of ice cream parlours where different flavours of ice cream are
added (or mixed in) to vanillato produce a new flavour. Thefirst language to support this style was
called Flavors which was a popul ar dialect of Lisp for awhile.)

Now we come to the point of this exercise which is to show our application code creating a logger
object and some bank accounts and passing the accounts to the logger, even though they are all
defined in different modul es!

Test | oggi ng and | oggabl e bank accounts.
HIH R

i nport | ogger
i nport | oggabl ebankaccount as | ba

| og = | ogger. Logger ()

ba = | ba. Loggabl eBankAccount (100)

ba. deposi t (700)

| og. | og(ba)

i ntacc = | ba. Loggabl el nt er est Account (200)

i ntacc. deposi t (500)
| og. I og(i ntacc)

Note the use of the as keyword to create a shortcut name when importing | oggabl ebankaccount

D:\DOC\HomePage\l 2p\tutclass.htm Page 162

Classes 12/04/2010

Note also that once we have created the local instances we no longer need to use the modul e prefix
and because thereis no direct access from one object to the other, it is al via messages, thereis no
need for the two class definition modules to directly refer to each other either. Finally notice a so that
the Logger works with instances of both Loggabl eBankAccount and

Loggabl el nt er est Account because they both support the Loggabl e interface. Compatibility of
object interfaces via polymorphism is the foundation upon which all OOP programs are built.

| should point out that a much more sophisticated logging systemisincluded in the standard library
| oggi ng module, this one was purdy to demonstrate some techniques. If you want logging facilities
in your own programmes investigate the standard | oggi ng modulefirst of all.

Hopefully this has given you ataste of Object Oriented Programming and you can move on to some
of the other online tutorials, or read one of the books mentioned at the beginning for more
information and examples. Now we will briefly look at how OOP is donein VBScript and JavaScript.

OOPin VBScript

VB Script supports the concept of objects and allows us to define classes and create i nstances,
however it does not support the concepts of inheritance or polymorphism. VBScript is therefore what
is known as Object Based rather than fully Object Oriented. Nonethel ess the concepts of combining
data and function in a single object remain useful, and alimited form of inheritance is possible using a
technique called del egation which we discuss bel ow.

Defining classes

A classis defined in VBScript using the d ass statement, like this:

<script type=text/VBScript>
O ass Myd ass
Private anAttribute
Publ i c Sub aMet hodW t hNoRet ur nVal ue()
MsgBox "MyC ass. aMet hodW t hNoRet ur nVval ue"
End Sub
Publ i c Function aMet hodW t hRet ur nval ue()
MsgBox "MyC ass. aMet hodW t hRet ur nVal ue”
aMet hodW t hRet ur nVal ue = 42
End Function
End d ass
</script>

This defines anew class called My ass with an attribute called anAt t r i but e whichisonly visible
to the methods inside the class, as indicated by the keyword Pri vat e. It is conventional to declare
data attributes to be Pr i vat e and most methods to be Publ i c¢. Thisis known as data hiding and has
the advantage of allowing us to control access to the data by forcing methods to be used and the
methods can do data quality checks on the values being passed in and out of the object. Python
provides its own mechanism for achieving this but it is beyond the scope of this tutorial.

Creating Instances

We cresate instances in VBScript with a combination of the Set and New keywords. The variable to
which the new instance is assigned must also have been declared with the Di mkeyword as is the usual
VBScript style.

<script type=text/VBScript>

D:\DOC\HomePage\l 2p\tutclass.htm Page 163

Classes 12/04/2010

Di m anl nst ance
Set anl nstance = New Myd ass
</script>

This creates an instance of the class declared in the previous section and assignsiit to the
anl nst ance variable.

Sending M essages

Messages are sent to instances using the same dot notation used by Python.

<script type=text/VBScript>

D m aval ue

anl nst ance. aMet hodW t hNoRet ur nVval ue()

aVal ue = anl nst ance. aMet hodW t hRet ur nVal ue()
MsgBox "aValue = " & aVal ue

</script>

The two methods declared in the class definition are called, in thefirst case thereis no return value, in
the second we assign the return to the variable aval ue. Thereis nothing unusual here apart from the
fact that the subroutine and function are preceded by the instance name.

Inheritance and Polymor phism

VBScript as alanguage does not provide any inheritance mechanism nor any mechanism for
polymorphism. However we can fake it to some degree by using a technique called delegation. This
simply means that we define an attribute of the sub class to be an instance of the theoretical parent
class. We then define a method for all of the "inherited" methods which simply calls (or delegates to),
in turn, the method of the parent instance. Let's subclass Myl ass as defined above:

<script type=text/VBScript>
G ass Subd ass
Private parent
Private Sub Class_Initialize()
Set parent = New Myd ass
End Sub
Publ i c Sub aMet hodW t hNoRet ur nVal ue()
par ent . aMet hodW t hNoREt ur nVAI ue
End Sub
Publ i c Function aMet hodW t hRet ur nVval ue()
aMet hodW t hRet ur nVal ue = parent. aMet hodW t hRet ur nval ue
End Function
Publ i c Sub aNewiMet hod
MsgBox "This is unique to the sub cl ass”
End Sub
End C ass

D minst, avVal ue

Set inst = New SubC ass

i nst. aMet hodW t hNoRet ur nVAI ue

aVal ue = inst.aMet hodWt hRet ur nVal ue
i nst . aNewivet hod

MsgBox "aValue =" & CStr(aVal ue)
</script>

D:\DOC\HomePage\l 2p\tutcl ass.htm Page 164

Classes 12/04/2010

The key points to note here are the use of the private attribute par ent and the specia, private
method Cl ass_I ni ti al i se. Theformer is the superclass del egate attribute and the latter is the
equivalent of Pythons __i ni t __ method for initializing instances when they are created, it is the
VB Script constructor in other words.

OOP in JavaScript

JavaScript supports objects using a technique called prototyping. This means that thereis no explicit
class construct in JavaScript and instead we can define a class in terms of a set of functions or a
dictionary like concept known as an initializer.

Defining classes

The most common way to define a JavaScript "class" is to create a function with the same name as the
class, effectively thisis the constructor, but is not contained within any other construct. It looks like
this.

<script type=text/JavaScri pt>
function Myd ass(theAttribute)
this.anAttribute = theAttribute;

<}script>

Y ou might notice the keyword t hi s which is used in the same way as Python's sel f as a placeholder
reference to the current instance.

We can add new attributes to the class later using the built in pr ot ot ype attribute like this:

<script type=text/JavaScri pt>
MyCl ass. prototype. newAttri bute = null;
</script>

This defines a new attribute of MyCl ass caled newAt t ri but e.

Methods are added by defining a normal function then assigning the function name to a new attribute
with the name of the method. Normally the method and function have the same name, but thereis
nothing to stop you calling the methods something different, as illustrated bel ow:

<script type=text/JavaScri pt>
function oneMet hod() {
return this.anAttribute,;

}
MyCl ass. prototype. getAttri bute = oneMet hod;
function printlt(){

document .write(this.anAttribute + "
");

3
MyCl ass. prototype.printlt = printlt;
</script>

Of course it would be more convenient to define the functions first then finish up with the constructor
and assign the methods inside the constructor and this is in fact the normal approach, so that the full
class definition looks like this:

D:\DOC\HomePage\l 2p\tutclass.htm Page 165

Classes 12/04/2010

<script type=text/JavaScri pt>
function oneMet hod() {

return this.anAttri bute;
3

function printlt(){
document .write(this.anAttribute + "
");
}

function Myd ass(theAttribute)
{

this.anAttribute = theAttribute,;
this.getAttri bute = oneMet hod;
this.printlt = printlt;

b

</script>
Creating I nstances

We creste instances of classes using the keyword new, like this:

<script type=text/JavaScri pt>
var anlnstance = new Myd ass(42);
</script>

Which creates a new instance called anl nst ance.
Sending M essages

Sending messages in JavaScript is no different to our other languages, we use the familiar dot
notation.

<script type=text/JavaScri pt>

document .wite("The attribute of anlnstance is:
");
anl nstance.printlt();

</script>

Inheritance and Polymor phism

Unlike VBScript it is possible to use JavaScript's prototyping mechanism to inherit from another class.
It is rather more complex than the Python technique but is not completely unmanageable, but it is, in
my experience, a relatively uncommon technique among JavaScript programmers.

The key to inheritance in JavaScript is the pr ot ot ype keyword (we used it in passing in the code
above). By using pr ot ot ype we can effectively add features to an object after it has been defined.
We can seethisin action here:

<script type="text/javascript">
function Message(text){
this.text = text;
this.say = function(){
docurment .wite(this.text + '
");

H
H
nmsgl = new Message(' This is the first');
nmsgl. say();

D:\DOC\HomePage\l 2p\tutclass.htm Page 166

Classes 12/04/2010

Message. pr ot ot ype. shout = function(){
alert(this.text);

b

nmsg2 = new Message(' This gets the new feature');
nsg2. shout () ;

/* But so did msgl...*/
nmsgl. shout () ;

</script>

Note 1. We added the new al ert method using pr ot ot ype after creating instance nsgl of the class
but the feature was availabl e to the existing instance as well as to theinstance, nsg2 created after the
addition. That is, the new feature gets added to all instances of Message both existing and new.

Note 2: We used function in anew way here. It effectively is used to create a function object which is
assigned to the object property. That is:

obj.func = function(){...};

is equivaent to saying:

function f(){....};
obj.func = f;

We will seeasimilar concept in Python when we get to the Functional Programming topic.

This prototyping feature gives rise to the interesting capability to change the behavior of built-in
JavaScript objects, either adding new features or changing the way existing features function! Usethis
capability with great careif you don't want to spend your time grappling with really confusing bugs.

This use of pr ot ot ype as a mechanism for adding functionality to existing classes has the
disadvantage that it alters the existing instance behaviors and changes the original class definition.

More conventional style inheritance is available too, as shown bel ow:

<script type="text/javascript">
function Parent(){
this.nane = ' Parent’;
t hi s. basenet hod = function(){
alert('This is the parent');

i

function Child(){
this.parent = Parent;
this.parent();
thi s. submet hod = function(){
alert('This fromthe child');
i
i

var aParent = new Parent ();
var aChild = new Child();

aPar ent . basenet hod() ;

D:\DOC\HomePage\l 2p\tutcl ass.htm Page 167

Classes 12/04/2010

achi | d. subnet hod() ;
aChi | d. basenet hod() ;

</script>

The key point to note hereis that the Chi | d object has access to the basenet hod without it being
explicitly granted, it has inherited it from the parent class by virtue of the assignment/call pair of lines:

this.parent = Parent;
this.parent();

within the Chi | d class definition. And thus we have inherited the basenet hod from the
Par ent class!

We can, of course, use the same delegation trick we used with VBScript. Hereis the VB Script
example translated into JavaScript:

<script type=text/JavaScri pt>
function noReturn(){
this.parent.printlt();

function returnVal ue(){
return this.parent.getAttribute();
3

function newvet hod() {
document .write("This is unique to the sub cl ass
");
3

function Subd ass(){
this. parent = new Myd ass(27);
t hi s. aMet hodW t hNoRet ur nVal ue = noRet ur n;
t hi s. aMet hodWt hRet ur nval ue = returnVal ue;
t hi s. aNewiet hod = newiVkt hod;

b

var inst, aVal ue;

inst = new SubC ass(); // define superclass
document . wite("The sub class value is:
");
i nst. aMet hodW t hNoRet ur nVal ue() ;

aVal ue = inst.aMet hodWt hRet urnVal ue();

i nst. aNewivet hod();

document .wite("aValue =" + aVal ue);
</script>

We will see classes and objects being used in the following topics and case studies. It is not always
obvious to a beginner how this, apparently complex, construct can make programs easier to write and
understand but hopefully as you see classes being used in real programs it will become clearer. One
thing | would like to say is that, for very small programs they do not really help and almost certainly
will make the program longer. However as your programs start to get bigger - over about 100 lines
say - then you will find that classes and objects can help to keep things organized and even reduce the
amount of code you write.

If you are one of those who finds the whole OOP concept confusing don't panic, many people have
programmed for their whole lives without ever creating a single class! On the other hand, if you can
get to grips with objects it does open up some powerful new techniques.

D:\DOC\HomePage\l 2p\tutclass.htm Page 168

Classes

12/04/2010

Things to Remember

Classes encapsul ate data and function into a single entity.

Classes are like cookie cutters, used to create instances, or objects.

Objects communicate by sending each other messages.

When an object receives a message it executes a corresponding method.

Methods are functions stored as attributes of the class.

Classes can inherit methods and data from other classes. This makes it easy to extend the
capabilities of a class without changing the original.

Polymorphism is the ability to send the same message to several different types of object and
each behaves in its own particular way in response.

Encapsulation, Polymorphism and Inheritance are all properties of Object

Oriented programming languages.

VB Script and JavaScript are called Object Based |anguages because while they support
encapsulation, they do not fully support inheritance and pol ymorphism.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutclass.htm Page 169

Event Driven Programs 12/04/2010
Event Driven Programming

What will we cover?

How does an event driven program differ from a batch program?
How to write an event loop
How to use an event framework such as Tkinter

So far we have been looking at batch oriented programs. Recall that programs can be batch oriented,
whereby they start, do something then stop, or event driven where they start, wait for events and only
stop when told to do so - by an event. How do we create an event driven program? We'll look at this
in two ways - first we will simulate an event environment then we'll create a very simple GUI program
that uses the operating system and environment to generate events.

Simulating an Event L oop

Every event driven program has a loop somewhere that catches received events and processes them.
The events may be generated by the operating environment, as happens with virtually all GUI
programs or the program itself may go looking for events as is often the case in embedded control
systems such as used in cameras etc.

We will create a program that looks for precisely one type of event - keyboard input - and processes
the results until some quit event is received. In our case the quit event will be the space key. We will
process the incoming events in a very simple manner - we will simply print the ASCII code for that
key. We'll use Python for this because it has a nice, easy to use function for reading keys one at atime
- get ch() . This function comes in two varieties depending on the operating system you use. If you
areusing Linux it'sfound in the cur ses module, if you use Windows it'sinthensvcrt module. I'll
use the Windows version first then I'll discuss the Linux option in more detail. Y ou will need to run
these programs from an OS command prompt since any IDE, like IDLE, being a GUI, will capture the
keystrokes differently.

First we implement the event handler functions that will be called when a keypress is detected then the
main program body which simply starts up the event gathering loop and calls the appropriate event
handling function when avalid event is detected.

i mport msvcert

def doKeyEvent (key):
if key == '"\x00'" or key == '"\xe0': # non ASCl
key = msvcrt.getch() # fetch second character
print(ord(key), end=")

def doQuitEvent (key):
rai se Systenkxit

First, clear the screen of clutter then warn the user
of what to do to quit

lines = 25 # set to nunber of lines in console

for line in range(lines): print()

print("Hit space to end...")
print()

Now mai nl oop runs "forever"

D:\DOC\HomePage\l 2p\tutevent.htm Page 170

Event Driven Programs 12/04/2010

whil e True:
ky = msvcrt. getch()
I ength = 1 en(ky)
if length I'= O:
send events to event handling functions
if ky == " ": # check for quit event
doQui t Event (ky)
el se:
doKeyEvent (ky)

Notice that what we do with the eventsis of no interest to the main body, it simply collects the events
and passes them to the event handlers. This independence of event capture and processing is a key
feature of event driven programming.

Note: Where the key was non ASCII - a Function key for example - we needed to fetch a second
character from the keyboard, this is because these special keys actually generate pairs of bytes and
get ch only retrieves one at atime. The actual value of interest is the second byte.

Linux and MacOS X programmers can't usethensvcrt library so must use another module called
cur ses instead. The resultant codeis very similar to the windows code but there are afew
modifications required, as shown bel ow:

i mport curses as c

def doKeyEvent (key):
if key == "\x00'" or key == '"\xe0': # non ASCI| key
key = screen.getch() # fetch second character
screen. addstr(str(key)+ ') # uses global screen variable

def doQuitEvent (key):
rai se Systemnkxit

clear the screen of clutter, stop characters auto

echoing to screen and then tell user what to do to quit
screen = c.initscr()

c. noecho()

screen. addstr("Ht space to end...\n")

Now mai nl oop runs "forever"

whil e True:
ky = screen. getch()
if ky !I'=-1:

send events to event handling functions
if ky == ord(" "): # check for quit event
doQui t Event (ky)
el se:
doKeyEvent (ky)

c.endw n()

You'll seethat the usual print commands don't work under curses and instead we have to use curses
own screen handling functions. Further, curses get ch returns - 1 when there is no key pressed rather
than an empty string. Aside from that the logic of the programis identical to the Windows version.

Note that the cur ses. endwi n() should restore your screen to normal but in some cases it may not
work completdy. If you wind up with an invisible cursor, no carriage return etc. You canfix it if you
exit Python with Ctrl-D and use the Linux command:

D:\DOC\HomePage\l 2p\tutevent.htm Page 171

Event Driven Programs 12/04/2010

$ stty echo -nl
Hopefully that will restore things to normal.

Note: At thetime of writing | can't actually test the Linux code under Python v3 sincel don't
have accessto a Linux distribution with Python v3 installed. This code is copied from the
Python v2 tutorial. Hopefully it works as-is. If not you might have to do some experimentation
to get it working. If that'sthe case please let me know. I'll remove this caveat oncel get the
chanceto test the code properly.

If we were creating this as a framework for use in lots of projects we would probably include acall to
an initialization function at the start and a cleanup function at the end. The programmer could then
use the loop part and provide his own initialization, processing and cleanup functions.

That's exactly what most GUI type environments do, in that the loop part is embedded in the
operating environment or framework and applications are contractually required to provide the event
handling functions and hook these into the event loop in some way.

Let's seethat in action as we explore Python's Tkinter GUI library.

A GUI program

For this exercise well use the Python Tkinter toolkit. Thisis a Python wrapper around the Tk tool kit
originally written as an extension to Tcl and also available for Perl and Ruby. The Python versionis an
object oriented framework which is, in my opinion, considerably easier to work with than the original
Tk version. We will look much more closely at the principles of GUI programming in the GUI topic.

| am not going to dwell much on the GUI aspects in this topic, rather | want to focus on the style of
programming - using Tkinter to handle the event loop and |eaving the programmer to create the initial
GUI and then process the events as they arrive.

In the exampl e we create an application class KeysApp which creates the GUI in the
__init__ method and binds the space key to the doQui t Event method. The class also defines the
required doQui t Event method.

The GUI itsdf simply consists of atext entry widget whose default behavior is to echo characters
typed onto the display.

Creating an application class is quite common in OO event driven environments because thereis alot
of synergy between the concepts of events being sent to a program and messages being sent to an
object. The two concepts map on to each other very easily. An event handling function thus becomes
amethod of the application class.

Having defined the class we simply create an instance of it and then send it the mai nl oop message.

The code looks like this:

Use from X inport * to save having to preface everything
as tkinter.xxx
fromtkinter import *

i mport sys

D:\DOC\HomePage\l 2p\tutevent.htm Page 172

Event Driven Programs 12/04/2010

Create the application class which defines the GUJ

and the event handling nethods

cl ass KeysApp(Frane):

def __init__(self): # use constructor to build QU

Frame. __init__ (self)
sel f.txtBox = Text(self)
sel f. t xt Box. bi nd("<space>", self.doQuitEvent)
sel f.t xt Box. pack()
sel f. pack()

def doQuitEvent(self,event):
sys.exit()

Now create an instance and start the event |oop running
nmyApp = KeysApp()
ny App. mai nl oop()

Note: If you run this from inside IDLE you will find the program doesn't close properly but simply
prints an exit message in the shell window. Don't worry, that's just IDLE trying to be helpful. If you
run it from a command prompt everything should be just fine.

Notice that we don't even implement a key event handler! That's because the default behavior of the
Text widget isto print out the keys pressed. However that does mean our programs are not really
functionally equivalent. In the console version we printed the ASCII codes of all keys rather than only
printing the alphanumeric versions of printable keys as we do here. There's nothing to prevent us
capturing all of the keypresses and doing the same thing. To do so we would add the following line to
the__init__ method:

sel f.txt Box. bi nd("<Key>", self.doKeyEvent)

And the following method to process the event:

def doKeyEvent (sel f, event):
str = "%\ n" % event. keycode
sel f.txtBox.insert(END, str)
return "break"

Note 1: the key valueis stored in the keycode field of the event. | had to look at the source code of
Tkinter.py to find that out... Recall that curiosity is a key attribute of a programmer?!

Note2: return "break" isamagic signal to tel Tkinter not to invoke the default event processing
for that widget. Without that line, the text box displays the ASCII code followed by the actual
character typed, which is not what we want here.

That's enough on Tkinter for now. Thisisn't meant to be a Tkinter tutorial, that's the subject of the
next topic. There are also several books on using Tk and Tkinter.

Event Driven Programming in VBScript and JavaScript

Both VBScript and JavaScript can be used in an event driven manner when programming a web
browser. Normally when a web page containing script code is |oaded the script is executed in a batch
fashion as the page |oads. However if the script contains nothing but function definitions the
execution will do nothing but define the functions ready for use, but the functions will not be called

D:\DOC\HomePage\l 2p\tutevent.htm Page 173

Event Driven Programs 12/04/2010

initially. Instead, in the HTML part of the page the functions will be bound to HTML & ements -
usually within a Form element - such that when events occur the functions are called. We have already
seen this in the JavaScript example of getting user input, when we read the input froman HTML

form. Let's look at that example again more closaly and see how it really is an example of event driven
programming within a web page:

<script type="text/javascript">
function nyProgram(){

alert("We got a value of " + docunent.entry. data. val ue);
}

</script>

<form nane="entry' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange='nyProgran()'>

</fornp

The script part simply defines a JavaScript function, and the definition is executed when the page
loads. The HTML code then creates a For mwith an | nput eement. As part of the | nput definition
we bind the onChange event to a short block of JavaScript which simply executes our

myPr ogr an() event handler. Now when the user changes the content of the | nput box the browser
executes our event handler. The event loop is embedded inside the browser.

VBScript can be used in exactly the same way except that the function definitions are all in VB Script
instead of JavaScript, likethis:

<script type="text/vbscript">

Sub myProgran()
MsgBox "We got a value of " & Docunent.entry2.data. val ue

End Sub
</script>

<form nane="entry2' >

<P>Type value then click outside the field with your nouse</P>
<Input Type='text' Nanme='data' onChange='nyProgran()'>

</fornp

Thus we can see that web browser code can be written in batch form or event driven formor a
combination of styles to suit our needs.

Thingsto remember

* Event loops do not care about the events they detect

* Event handlers handle one single event at atime

* Frameworks such as Tkinter provide an event loop and often some default event handlers
too.

* Web browsers provide for both batch and event driven coding styles, or even a mixture of
both.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutevent.htm Page 174

Introduction to GUI Programming 12/04/2010
GUI Programming with Tkinter

What will we cover?

Basic GUI building principles

Basic widgets

Simple Tkinter program structure
GUI and OOP, a perfect match
wxPython as an alternative to Tkinter

In this topic we look at how a GUI program is assembled in a genera sense, then how thisis done
using Python's native GUI toolkit, Tkinter. Thiswill not be afull blown Tkinter reference nor even a
complete tutorial. Thereis aready a very good and detailed tutor linked from the Python web site.
This tutorial will instead try to lead you through the basics of GUI programming, introducing some of
the basic GUI components and how to use them. We will also look at how Object Oriented
programming can help organize a GUI application.

GUI principles

Thefirst thing | want to say is that you won't learn anything new about programming here.
Programming a GUI is exactly like any other kind of programming, you can use sequences, loops,
branches and modules just as before. What is different is that in programming a GUI you usually use a
Toolkit and must follow the pattern of program design laid down by the toolkit provider. Each new
toolkit will have its own API and set of design rules and you as a programmer need to learn these.
This is why most programmers try to standardize on only afew toolkits which are available across
multiple languages - learning a new tool kit tends to be much harder than learning a new programming
language!

Most windows programming languages come with atoolkit included (usually a thin veneer over the
very primitive toolkit built into the windowing systemitsdf). Visua Basic, Delphi and Visua
C++/.NET are examples of this.

Javais different in that the language includes its own graphics toolkit (actually more than one!) which
runs on any platform that Java runs on - which is amost any platform!

There are other toolkits that you can get separately which can be used on any OS (Unix, Mac,
Windows...). These generally have adapters to allow them to be used from many different languages.
Some of these are commercial but many are freeware. Examples are: GT/K, Qt, Tk

They all have web sites. For some examples try:

* wxPython, a Python version of the wxWidgets toolkit whichis actually written in C++

* PyQt, the Qt toolkit which has "bindings’ to most languages.

* pyGTK, the Gimp Toolkit, or GTk which is an opensource project used heavily in the Linux
community.

Qt and GT/k are what most Linux applications are written in and are both free for non commercial use
(i.e. where you don't sell your programs for profit). Qt can provide a commercial licensetoo if you
want to useit for commercial purposes and GTKk is licensed under the Gnu GPL which has its own
special terms.

D:\DOC\HomePage\l 2p\tutgui .htm Page 175

Introduction to GUI Programming 12/04/2010

The standard Python graphics toolkit (i.e. it comes with the language) is Tkinter which is based on
Tk, afairly old multi-OS toolkit. Thisis thetoolkit we will ook at most closdly, versions of it are
availablefor Tcl, Haskdl, Ruby and Perl as well as Python.

The principlesin Tk are slightly different to other toolkits so | will conclude with avery brief look at
another popular GUI toolkit for Python (and C/C++) which is more conventional in its approach. But
first, some general principles:

As we have already stated several times GUI applications are nearly always event driven in nature. If
you don't remember what that means go back and |ook at the event driven programming topic.

| will assume that you are already familiar with GUIs as a user and will focus on how GUI programs
work from a programmer's perspective. | will not be going into details of how to write large complex
GUIs with multiple windows, MDI interfaces etc. | will stick to the basics of creating a single window
application with some labels, buttons, text boxes and message boxes.

First things first, we need to check our vocabulary. GUI programming has its own set of programming
terms. The most common terms are described in the table below:

| Term | Description

Window |An area of the screen controlled by an application. Windows are usually rectangular but
some GUI environments permit other shapes. Windows can contain other windows and
frequently every single GUI control is treated as awindow in its own right.

Control |A control isaGUI object used for controlling the application. Controls have properties
and usually generate events. Normally controls correspond to application level objects and
the events are coupled to methods of the corresponding object such that when an event
occurs the object executes one of its methods. The GUI environment provides a
mechanism for binding events to methods.

D:\DOC\HomePage\l 2p\tutgui .htm Pege 176

Introduction to GUI Programming 12/04/2010

Widget

A control, sometimes restricted to visible controls. Some controls (such as timers) can be
associ ated with a given window but are not visible. Widgets are that subset of controls
which are visible and can be manipulated by the user or programmer. The widgets that we
shall cover are:

Frame
Labd
Button
Text Entry

Message box

The ones we won't discuss in this topic but are used elsewhere in the tutor are:

* Text box
* Radio Button

Finally, some of the ones not discussed at all are:

Canvas - for drawing

Check button - for multiple selections

Image - for displaying BMP, GIF, JPEG and PNG images
Listbox - for lists!

Menu/MenuButton - for building menus

Scale/Scrollbar - indicating position

Frame

A type of widget used to group other widgets together. Often a Frameis used to represent
the complete window and further frames are embedded within it.

Layout

Controls are laid out within a Frame according to a particular set of rules or guidelines.
These rules form a Layout. The Layout may be specified in a number of ways, either using
on-screen coordinates specified in pixels, using relative position to other components (I €ft,
top etc) or using agrid or table arrangement. A coordinate system is easy to understand
but difficult to manage when awindow is resized etc. Beginners are advised to use
non-resizable windows if working with coordinate based |ayouts.

Child

GUI applications tend to consist of a hierarchy of widgets/controls. Thetop level Frame
comprising the application window will contain sub frames which in turn contain still more
frames or controls. These controls can be visualized as a tree structure with each control
having a single parent and a number of children. In fact it is normal for this structure to be
stored explicitly by the widgets so that the programmer, or more commonly the GUI
environment itself, can often perform some common action to a control and all of its
children. For example, closing the topmost widget resultsin all of the child widgets being
closed too.

The Containment tree

One very important principleto grasp in GUI programming is the idea of a containment hierarchy.
That is, the widgets are contained in atree like structure with atop level widget controlling the entire
interface. It has various child widgets which in turn may have children of their own. Events arrive at a
child widget and if it is unable to handleit it will pass the event to its parent and so on up to the top
level. Smilarly if acommand is given to draw awidget it will send the command on down to its
children, thus a draw command to the top level widget will redraw the entire application whereas one
sent to a button will likely only redraw the button itself.

D:\DOC\HomePage\l 2p\tutgui.htm Page 177

Introduction to GUI Programming 12/04/2010

This concept of events percolating up the tree and commands being pushed down is fundamental to
understanding how GUIs operate at the programmer level. It is aso the reason that you always need
to specify awidget's parent when creating it, so that it knows where it sits in the containment tree. We
can draw the containment tree for a simple application that we will create later in thistopic like this:

Top Level

Frame

Frame Frame

Button Button

This illustrates the top level widget containing a single Fr ame which represents the outermost
window border. This in turn contains two more Frames, the first of which contains a Text

Ent ry widget and the second contains the two But t ons used to control the application. We will
refer back to this diagram later in the topic when we come to build the GUI.

A Tour of Some Common Widgets

In this section we will use the Python interactive prompt to create some simple windows and widgets.
Note that because IDLE isitsdlf a Tkinter application you cannot reliably run Tkinter applications
within IDLE. You can of course create the files using IDLE as an editor but you must run them from
a OS command prompt. Pythonwin users can run Tkinter applications since Pythonwin is built using
windows own GUI toolkit, MFC. However even within Pythonwin there are certain unexpected
behaviors with Tkinter application. As aresult | will use the raw Python prompt from the Operating
System.

>>> fromtkinter inport *

Thisisthefirst requirement of any Tkinter program - import the names of the widgets. Y ou could of
course just import the module but it quickly getstiring typing t ki nt er in front of every component
name.

>>> top = Tk()

This creates the top level widget in our widget hierarchy. All other widgets will be created as children
of this.

D:\DOC\HomePage\l 2p\tutgui .htm Page 178

Introduction to GUI Programming 12/04/2010

What happened at this point will depend on where you are typing the program. If, like me, you are
using Python from an OS prompt you will have seen that a new blank window has appeared complete
with an empty title bar save for a Tk logo as icon and the usual set of control buttons (iconify,
maximize etc). If you are using an |DE you may not see anything yet, it will onoly appear when we
complete the GUI and start the main event loop running.

We will now add components to this window as we build an application.

>>> dir(top)
[....lots of stuff!...]

Thedi r () function shows us what names are known to the argument. Y ou can use it on modules but
in this case we are looking at the internals of thet op object, an instance of the Tk class. These are the
attributes of t op, and there are alot of them! Take alook, in particular, for thechi | dr en and

mast er attributes which are the links to the widget containment tree. Note also the attribute

_t cl Conmands, thisis because, as you might recall, Tkinter is built on aTcl toolkit called Tk.

>>> F = Frame(top)

Create a Frame widget which will in turn contain the child control s/widgets that we use.
Fr anme specifiest op asitsfirst (and in this case only) parameter thus signifying that F will be achild
widget of t op.

>>> F. pack()

Notice that the Tk window (if it's visible) has now shrunk to the size of the added Frame widget -
which is currently empty so the window is now very small! Thepack() method invokes a Layout
Manager known as the packer which is very easy to use for simple layouts but becomes alittle clumsy
as the layouts get more complex. We will stick with it for now becauseit is easy to use. Note that
widgets will not be visible in our application until we pack them (or use another Layout manager
method). We will talk alot more about Layout Managers later on, after we complete this short
program.

>>> | Hell o = Label (F, text="Hello world")

Here we create a new object, | Hel | o, an instance of the Label class, with a parent widget F and a
t ext attribute of "Hello world". Notice that because Tkinter object constructors tend to have many
parameters (each with default values) it is usual to use the named parameter technique of passing
arguments to Tkinter objects. Also notice that the object is not yet visible because we haven't packed
it yet.

Onefinal point to noteis the use of a naming convention: | put alowercase , for Label, in front of a
name, Hel | o, which reminds me of its purpose. Like most naming conventions this is a matter of
persona choice, but | find it helps.

>>> | Hel | 0. pack()

Now we can seeit. Hopefully yours looks quite alot like this:

tk A= B3

Hella warld

D:\DOC\HomePage\l 2p\tutgui .htm Page 179

Introduction to GUI Programming 12/04/2010

We can specify other properties of the Labe such as the font and color using parameters to the object
constructor too. We can also access the corresponding properties using the conf i gur e method of
Tkinter widgets, like so:

>>> | Hel | 0. confi gure(text="Goodbye")

The message changed. That was easy, wasn't it? conf i gur e isan especialy good technique if you
need to change multiple properties at once because they can all be passed as arguments. However if
you only want to change a single property at atime, as we did above you can treat the object like a
dictionary, thus:

>>> | Hello['text'] = "Hello again"
which is shorter and arguably easier to understand.

Labe s are pretty boring widgets, they can only display read-only text, albeit in various colors, fonts
and sizes. (In fact they can be used to display simple graphics too but we won't bother with that here).

Before we look at another object type there is one more thing to do and that's to set the title of the
window. We do that by using a method of the top level widget t op:

>>> F.master.title("Hello")

We could have used t op directly but, as we'll seelater, access through the Frame's master property is
a useful technique.

>>> pQuit = Button(F, text="Quit", command=F. quit)

Here we create a new widget - a button. The button has alabel "Quit" and is associated with the
command F. qui t . Note that we pass the method name, we do not call the method by adding
parentheses after it. This means we must pass a function object in Python terms, it can be a built-in
method provided by Tkinter, as here, or any other function that we define. The function or method
must take no arguments. The qui t method, like the pack method, is defined in abaseclassand is
inherited by all Tkinter widgets, but is usually called at the top window level of the application.

>>> bQuit. pack()
Once again the pack method makes the button visible.

>>> top. mai nl oop()

And finally we start the Tkinter event loop. Notice that the Python >>> prompt has now disappeared.
That tells us that Tkinter now has control. If you pressthe Qui t button the prompt will return,
proving that our command option worked. Don't expect the window to close, the python interpreter is
still running and we only quit the mai nl oop function, the various widgets will be destroyed when
Python exits - which in real programs is usually immediately after the mainloop terminates!

Notethat if running this from Pythonwin or IDLE you may not have seen anything until this point!
And you may get a slightly different result, if so try typing the commands so far into a Python script
and running them from an OS command prompt.

In fact it's probably a good time to try that anyhow, after all, it's how most Tkinter programs will be
run in practice. Use the principle commands from those we've discussed so far as shown:

D:\DOC\HomePage\l 2p\tutgui .htm Page 180

Introduction to GUI Programming 12/04/2010
fromtkinter import *

set up the w ndow itself
top = Tk()

F = Frame(top)

F. pack()

add the widgets
| Hel o = Label (F, text="Hello")

| Hel | 0. pack()
bQuit = Button(F, text="Quit", conmand=F. quit)
bQuit. pack()

set the |l oop running
t op. mai nl oop()

Thecall tothet op. mai nl oop method starts the Tkinter event loop generating events. In this case
the only event that we catch will be the button press event which is connected to the F. qui t method.
F. qui t inturn will terminate the application and this time the window will aso close because Python
has also exited. Try it, it should look like this:

Hella
it |

Noticethat | missed the line that changes the window title. Try adding that linein by yoursef and
check that it works as expected.

Exploring Layout

Note: from now on I'll provide examples as Python script files rather than as commands at the >>>
prompt. In most cases I'll only be providing snippets of code so you will haveto put in the callsto
Tk() and thenmi nl oop() yoursdf, usethe previous program as a template.

In this section | want to look at how Tkinter positions widgets within awindow. We aready have
seen Frame, Label and Button widgets and those are all we need for this section. In the previous
example we used the pack method of the widget to locate it within its parent widget. Technically
what we are doing is invoking Tk's packer Layout Manager. (Another name for Layout Manager is
Geometry Manager.) The Layout Manager's job is to determine the best layout for the widgets based
on hints that the programmer provides, plus constraints such as the size of the window as controlled
by the user. Some Layout managers use exact locations within the window, specified in pixels
normally, and this is very common in Microsoft Windows environments such as Visual Basic. Tkinter
includes a Placer Layout Manager which can do this too via a place method. | won't look at that in
this tutor because usually one of the other, more intelligent, managers is a better choice, since they
take the need to worry about what happens when awindow is resized away from us as programmers.

The simplest Layout Manager in Tkinter is the packer which we've been using. The packer, by default,
just stacks widgets one on top of the other. That is very rarely what we want for normal widgets, but
if we build our applications from Frames then stacking Frames on top of each other is quite a
reasonabl e approach. We can then put our other widgets into the Frames using either the packer or
other Layout Manager within each Frame as appropriate. (Each Frame can have its own Layout
Manager, but you cannot mix managers within asingle frame.) Y ou can see an example of thisin
action in the Case Study topic.

D:\DOC\HomePage\l 2p\tutgui .htm Page 181

Introduction to GUI Programming 12/04/2010

Even the simple packer provides a multitude of options, however. For example we can arrange our
widgets horizontally instead of vertically by providing asi de argument, like so:

| Hel | 0. pack(side="1eft")
bQuit. pack(side="1eft")

That will force the widgets to go to the left thus the first widget (the label) will appear at the extreme
left hand side, followed by the next widget (the Button). If you modify the lines in the example above
it will look likethis:

| hello FI=1 B

Hella Cluit

Andif you changethe"l eft" to"ri ght" thenthe Label appears on the extreme right and the
Button to the left of it, like so:

hello [H[=]

[it | Hella

Onething you noticeis that it doesn't look very nice because the widgets are squashed together. The
packer also provides us with some parameters to deal with that. The easiest to use is Padding and is
specified in terms of horizontal padding (padx), and vertical padding(pady). These values are
specified in pixds. Let's try adding some horizontal padding to our example:

| Hel | 0. pack(side="left", padx=10)
bQuit. pack(side="left', padx=10)

It should look likethis:

hello [E[=] B3

Hella [uait

If you try resizing the window you'll see that the widgets retain their positions relative to one another
but stay centered in the window. Why is that, if we packed them to the |eft? The answer is that we
packed them into a Frame but the Frame was packed without a side, so it is positioned top, center -
the packers default. If you want the widgets to stay at the correct side of the window you will need to
pack the Frame to the appropriate side too:

F. pack(side="left")

Also note that the widgets stay centered if you resize the window vertically - again that's the packers
default behavior.

I'll leave you to play with padx and pady for yourself to see the effect of different values and
combinations etc. Between them, si de and padx/ pady alow quitealot of flexibility in the
positioning of widgets using the packer. There are several other options, each adding another subtle
form of control, please check the Tkinter reference pages for details.

D:\DOC\HomePage\l 2p\tutgui .htm Page 182

Introduction to GUI Programming 12/04/2010

There are a few other layout managers in Tkinter, known as the grid, and the placer. (In addition the
Ti x module which augments Tkinter provides a For mlayout manager. We do not cover Tix here.)) To
use the grid manager you usegri d() instead of pack() and for the placer you call pl ace() instead
of pack() . Each hasits own set of options and since I'll only cover the packer in thisintro you'll need
to look up the Tkinter tutorial and reference for the details. The main points to note are that the grid
arranges components in a grid (surprise!) within the window - this can often be useful for dialog
boxes with lined up text entry boxes, for example. Many Tkinter users prefer the grid to the packer
but for beginners it can take alittle getting used to. The placer uses either fixed coordinates in pixels
or relative coordinates within awindow. The latter allow the component to resize along with the
window - always occupying 75% of the vertical space say. This can be useful for intricate window
designs but does require alot of pre-planning - | strongly recommend a pad of squared paper, a pencil
and eraser!

Controlling Appearance using Frames and the Packer

The Frame widget actually has a few useful properties that we can use. After al, it's very well having
alogical frame around components but sometimes we want something we can seetoo. Thisis
especially useful for grouped controls like radio buttons or check boxes. The Frame solves this
problem by providing, in common with many other Tk widgets, arelief property. Relief can have any
one of several values. sunken, raised, groove, ridgeorflat.Let'susethesunken vaueon
our simple dialog box. Simply change the Frame cregtion line to:

F = Frame(top, relief="sunken", border=1)

Note 1:You need to provide a border too. If you don't the Frame will be sunken but with an invisible
border - you don't see any difference!

Note 2: that you don't put the border size in quotes. Thisis one of the confusing aspects of Tk
programming is knowing when to use quotes around an option and when to leave them out. In

general if it's anumeric or single character value you can leave the quotes off. If it's amixture of digits
and letters or a string then you need the quotes. Likewise with which letter case to use. Unfortunately
thereis no easy solution, you just learn from experience - Python often gives alist of the valid options
init's error messages!

One other thing to notice is that the Frame doesn't fill the window. We can fix that with another
packer option called, unsurprisingly, fi | 1 . When you pack the frame do it thusly:

F. pack(fill="x")

Thisfills horizontally, if you want the frameto fill the entirewindow just usefil | ='y' too. Because
thisis quite a common requirement thereis a specia fill option called BOTH so you could type:

F. pack(fill="both")

The end result of running the script now looks like:

Hella

it |

D:\DOC\HomePage\l 2p\tutgui .htm Page 183

Introduction to GUI Programming 12/04/2010
Adding mor e widgets

Let'snow look at atext Entry widget. Thisisthe familiar single line of text input box. It shares alot
of the methods of the more sophisticated Text widget which we used in the event handling topic and
will also usein the case study topic. Essentially we will simply use an Entry to capture what the user
types and to clear that text on demand.

Going back to our "Hello World" program we'll add a text Entry widget inside a Frame of its own and
then, in a second Frame, put a button that can clear the text that we type into the Entry. We will also
add a button to quit the application. This will demonstrate not only how to create and use the Entry
widget but also how to define our own event handling functions and connect them to widgets.

fromtkinter inmport *

create the event handler to clear the text
def evO ear():
eHel | 0. del et e(0, END)

create the top | evel w ndow frane
top = Tk()

F = Frame(top)

F. pack(fill="both")

Now the frame with text entry
fEntry = Frame(F, border=1)
eHello = Entry(fEntry)

fEntry. pack(si de="t op")

eHel | 0. pack(side="left")

Finally the frane with the buttons.

W'l sink this one for enphasis

fButtons = Frame(F, relief="sunken", border=1)

bCdl ear = Button(fButtons, text="Cl ear Text", conmand=evC ear)
bd ear. pack(side="left", padx=5, pady=2)

bQuit = Button(fButtons, text="Qit", comrand=F.quit)

bQuit. pack(side="left", padx=5, pady=2)

f Butt ons. pack(si de="top", fill="x")

Now run the eventl oop
F. mai nl oop()

Note again that we pass the name of the event handlers (evC ear and F. qui t), without parentheses,
as the command argument to the buttons. Note also the use of a naming convention, evXXX to link
the event handler with the corresponding widget.

Running the program yiel ds this:

tk _ O]
S

(it

‘ Clear Text

And if you type something in the text entry box then hit the "Clear Text" button it removesit again.

D:\DOC\HomePage\l 2p\tutgui .htm Page 184

Introduction to GUI Programming 12/04/2010

Of coursethere is not much point in having an Entry widget unless we can get access to the text
contained within it. We do this using the get method of the widget. I'll illustrate that by copying the
text from the widget to alabel just before clearing it so that we can always see the last text that the
widget held. To do that we need to add a Label widget just under the Entry widget and extend the
evClear event handler to copy the text. And just for fun we will colour the labd text alight blue. The
modified program is shown bel ow with the modifications in bold:

fromtkinter inmport *

create the event handler to clear the text
def evO ear():

| History['text'] = eHello.get()

eHel | 0. del et e(0, END)

create the top | evel w ndow frane

top = Tk()
F = Frame(top)
F. pack(fill="both")

Now the frame with text entry

fEntry = Frane(F, border=1)

eHello = Entry(fEntry)

eHel | 0. pack(side="left")

| Hi story = Label (fEntry, foreground="steel blue")
| Hi story. pack(side="bottont, fill="x")

fEntry. pack(si de="top")

Finally the frane with the buttons.

W'l sink this one for enphasis

fButtons = Frame(F, relief="sunken", border=1)

bl ear = Button(fButtons, text="Cl ear Text", conmmand=evC ear)
bd ear. pack(side="left", padx=5, pady=2)

bQuit = Button(fButtons, text="Quit", comrand=F.quit)

bQuit. pack(side="left", padx=5, pady=2)

f Butt ons. pack(si de="top", fill="x")

Now run the eventl oop
F. mai nl oop()

Notice that while we have here assigned the text directly to the Labe property but we could equally
well have assigned it to a normal Python variable for use later in our program.

You might recall that back in the Talking to the User topic we discussed the EasyGUI module and its
basic data entry dialog box? Y ou can probably begin to see how such a dialog box can be created.
Unfortunately there are a couple of extra bits of information we need before we are ready to do that.

Binding events - from widgets to code

Up till now we have used the command property of buttons to associate Python functions with GUI
events. Sometimes we want more explicit control, for example to catch a particular key combination.
The way to do that is use the bi nd function to explicitly tie together (or bind) an event and a Python
function.

WEIl now define a hot key - let's say CTRL-c - to delete the text in the above example. To do that we
need to bind the CTRL-C key combination to the same event handler as the Clear button.
Unfortunately there's an unexpected snag. When we use the command option the function specified

D:\DOC\HomePage\l 2p\tutgui .htm Page 185

Introduction to GUI Programming 12/04/2010

must take no arguments. When we use the bind function to do the same job the bound function must
take one argument. Thus we need to create a new function with a single parameter which calls
evd ear . Add the following after theevd ear definition:

def evHot Key(event):
evd ear ()

And add the following line following the definition of the eHel | o Entry widget:

eHel | 0. bi nd("<Control -c>", evHot Key) # the key definition is case sensitive

Run the program again and you can now clear the text by either hitting the button or typing Ctrl-c.
We could also use bind to capture things like mouse clicks or capturing or losing focus (that is,
making the window active or inactive) or even the window becoming visible (or hidden). See the
Tkinter documentation for more information on this. The hardest part is usually figuring out the
format of the event description!

A Short Message
Y ou can report short messages to your users using a MessageBox. Thisisvery easy in Tk and is
accomplished using thet kMessageBox module functions as shown:

i mport tkMessageBox
t kMessageBox. showi nf o("W ndow Text", "A short nessage")

There are also error, warning, Yes/No and OK/Cancel boxes available via different
showXxXX functions. They are distinguished by different icons and buttons. The latter two use
askXXX instead of showXxXX and return a value to indicate which button the user pressed, like so:

res = tkMessageBox. askokcancel ("Wich?", "Ready to stop?")
print res

Here are some of the Tkinter message boxes:

! Window text i Dops! I ' What? I

® &, ghort meszzage Q o that waz just stupidl @ will you da it?

There are al so standard dialog boxes that you can use to get filenames or directory names from the
user that look just like the normal GUI "Open File" or "Save File" dialogs. | won't describe them here
but you will find examples in the Tkinter reference pages under Standard Dialogs. You will notice
there that there are direct equivalents to the EasyGui dialogs available within Tkinter, so you only
really need to use EasyGUI when working in a command line environment and want to give a bit of
GUI like polish to your program.

Wrapping Applications as Objects

D:\DOC\HomePage\l 2p\tutgui .htm Page 186

Introduction to GUI Programming 12/04/2010

It's common when programming GUI's to wrap the entire application as a class. This begs the
question, how do wefit the widgets of a Tkinter application into this class structure? There are two
choices, we either decide to make the application itself as a subclass of a Tkinter Frame or have a
member field store areference to the top level window. The latter approach is the one most
commonly used in other toolkits so that's the approach welll use here. If you want to see the first
approach in action go back and look at the examplein the Event Driven Programming topic. (That
example aso illustrates the basic use of the incredibly versatile Tkinter Text widget as well as another
example of using bi nd)

| will convert the example above, using an Entry field, a Clear button and a Quit button, to an OO
structure. First we create an Application class and within the constructor assembl e the visual parts of
the GUI.

We assign the resultant Frameto sel f . mai nW ndow, thus allowing other methods of the class
access to the top level Frame. Other widgets that we may need to access (such as the Entry field) are
likewise assigned to member variables of the application. Using this technique the event handlers
become methods of the application class and all have access to any other data members of the
application (although in this case there are none) through the sel f reference. This provides seamless
integration of the GUI with the underlying application objects:

fromtkinter inmport *

create the event handler to clear the text
cl ass O ear App:
def __init__(self, parent=0):

create the top | evel w ndow frane
sel f. mai nW ndow = Frane(parent)
self.eHello = Entry(sel f.mai nW ndow)
self.eHello.insert(0,"Hello world")
sel f.eHel | 0. pack(fill="x", padx=5, pady=5)
sel f.eHello. bind("", self.evHotKey)

Now the frame with the buttons.
fButtons = Frane(sel f. mai nW ndow, hei ght =2)
sel f.bCl ear = Button(fButtons, text="Cear",
wi dt h=10, hei ght =1, conmand=sel f. evCl ear)
self.bQuit = Button(fButtons, text="Quit",
wi dt h=10, hei ght=1, comuand=sel f. mai nW ndow. qui t)
sel f. bd ear. pack(side="left", padx=15, pady=1)
sel f.bQuit.pack(side="right", padx=15, pady=1)
f Butt ons. pack(si de="top", pady=2, fill="x")
sel f. mai nW ndow. pack()
sel f. mai nW ndow. master.title("Cl ear Application")

def evd ear(self):
sel f. eHel | 0. del et e(0, END)

def evHot Key(self, event):
sel f.evC ear ()

Now create the app and run the eventl oop

top = Tk()

app = O ear App(top)
t op. mai nl oop()

Here's the result:

D:\DOC\HomePage\l 2p\tutgui .htm Page 187

Introduction to GUI Programming 12/04/2010

Clear =l
Hello warld
Clear | (it |

The result looks remarkably like the previous incarnation although | have tweaked some of the
configuration and pack options to look more similar to the wxPython example bel ow.

Of courseit's not just the main application that we can wrap up as an object. We could create a class
based around a Frame containing a standard set of buttons and reuse that class in building dialog
windows say. We could even create whole dialogs and use them across several projects. Or we can
extend the capabilities of the standard widgets by subclassing them - maybe to create a button that
changes colour depending on its state. This is what has been done with the Tix module which is an
extension to Tkinter which is also part of the stand library.

Since version 3.1 Tkinter also includes some new features, known as themed widgets which greeatly
improve the look of Tkinter so that it is virtually indistinguishable from the native OS widgets. | won't
cover these here but you can read about them on the Tcl/Tk web site.

An alternative - wxPython

There are many other GUI toolkits available but one of the most popular is the wxPython tool kit
whichis, inturn, awrapper for the C++ toolkit wxWidgets. wxPython is much more typical than
Tkinter of GUI toolkitsin general. It also provides more standard functionality than Tk "out of the
box" - things like tooltips, status bars etc which have to be hand crafted in Tkinter. We'll use
wxPython to recreate the simple "Hello World" Label and Button example above.

Onemajor snag isthat wxPython is not yet available for Python v3! It isintended to port it but
the maintainer has not, at the time of writing, done so. That means you will need to treat thev2
code below as a reading exercise only.

| won't go through thisin detail, if you do want to know more about how wxPython works you will
need to download the package from the wxPython website.

In general terms the toolkit defines a framework which allows us to create windows and popul ate
them with controls and to bind methods to those controls. It is fully object oriented so you should use
methods rather than functions. The example looks like this:

i mport wx
--- Define a custom Frane, this will becone the main w ndow ---
cl ass Hel | oFrame(wx. Framne) :
def __init__(self, parent, id, title, pos, size):
wx. Frame. __init__ (self, parent, id, title, pos, size)
we need a panel to get the right background
panel = wx. Panel (self)

Now create the text and button wi dgets

self.tHello = wx. TextCtrl (panel, -1, "Hello world", pos=(3,3), size=(185,
bl ear = wx. Button(panel, -1, "Clear", pos=(15, 32))

sel f. Bi nd(wx. EVT_BUTTON, self.Ond ear, bC ear)

bQuit = wx.Button(panel, -1, "Quit", pos=(100, 32))

sel f.Bi nd(wx. EVT_BUTTON, self.OnQuit, bQuit)

these are our event handl ers

D:\DOC\HomePage\l 2p\tutgui .htm Page 188

Introduction to GUI Programming 12/04/2010

def OnCl ear(self, event):
self.tHello.Cear()

def OnQuit(self, event):
sel f. Destroy()

--- Define the Application Object ---

Note that all wxPython prograns MJST define an

application class derived from wx. App

cl ass Hel | oApp(wx. App) :

def Onlnit(self):

frame = Hel | oFrame(None, -1, "Hello", (200,50), (200,90))
frame. Show(Tr ue)
sel f. Set TopW ndow(f r ane)
return True

create instance and start the event |oop
Hel | oApp() . Mai nLoop()

And it looks like this:

et L3
i Hellio wiorld
i | Clear I [ik]

Points to note are the use of a naming convention for the methods that get called by the framework -
OnXXXX. Also note the EVT_XXX constants used to bind events to widgets - thereis awhole family of
these. wxPython has a vast array of widgets, far more than Tkinter, and with them you can build quite
sophisticated GUIs. Unfortunately they tend to use a coordinate based placement scheme which
becomes very tedious after awhile. It is possible to use a scheme very similar to the Tkinter packer
but its not so well documented.

Incidentally it might be of interest to note that this and the very similar Tkinter example above have
both got about the same number of lines of executable code - Tkinter: 23, wxPython: 21.

In conclusion, if you just want a quick GUI front end to a text based tool then Tkinter should meet
your needs with minimal effort. If you want to build full featured cross platform GUI applications
look more closdly at wxPython.

Other toolkits include MFC and .NET and of course thereis the venerable curses which is akind of
text based GUI! Many of the lessons we've learned with Tkinter apply to all of these toolkits but each
has its own characteristics and foibles. Pick one, get to know it and enjoy the wacky world of GUI
design. Finally I should mention that many of the toolkits do have graphical GUI builder tools, for
example Qt has Blackadder and GTK has Glade. wxPython has Python Card which tries to simplify
the whole wxPython GUI building process. Thereis also afree GUI builder, Boa Constructor,
available athough still only in Alpharelease state. Thereis even a GUI builder for Tkinter called
SpecTix , based on an earlier Tcl tool for building Tk interfaces, but capable of generating codein
multiple languages including Python. Thereis also an enhanced set of widgets for Tkinter called Tix
which has recently been added to the standard Python library (and another popular add-in is the
Python Mega-Widgets (PMW)) to fill the gap between the basic Tkinter set and those provided by
wxPython etc.

D:\DOC\HomePage\l 2p\tutgui .htm Page 189

Introduction to GUI Programming 12/04/2010

That's enough for now. This wasn't meant to be a Tkinter reference page, just enough to get you
started. See the Tkinter section of the Python web pages for links to other Tkinter resources.

There are also several books on using Tcl/Tk and severa Python books have chapters on Tkinter. |
will however come back to Tkinter in the case study, where | illustrate one way of encapsulating a
batch mode program in a GUI for improved usability.

Thingsto remember

® GUIs controls are known as widgets

* Widgets are assembled in a containment hierarchy

* Different GUI toolkits provide different sets of widgets, although there will be a basic set you
can assume will be present

* Frames allow you to group related widgets and form the basis of reusable GUI components

* Event handling functions or methods are associated with widgets by linking their name with
the widgets command property.

* OOP can simplify GUI programming significantly by creating objects that correspond to
widget groups and methods that correspond to events.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutgui .htm Page 190

Recursion 12/04/2010
Recursion

What will we cover?

* A definition of recursion
* How recursion works
* How recursion helps simplify some hard problems

Note: Thisisafairly advanced topic and for most applicationsyou don't need to know anything about it.
Occasionally, it isso useful that it isinvaluable, so | present it herefor your study. Just don't panicif it doesn't make
sense straight away.

What isit?

Despite what | said earlier about |ooping being one of the cornerstones of programming it isin fact
possibleto create programs without an explicit loop construct. Some languages, such as Scheme, do
not in fact have an explicit loop construct like For, Wi le, etc. Instead they use atechnique
known as recursion . Thisturns out to be a very powerful technique for some types of problem, so
welll take alook at it now.

Recursion simply means applying afunction as a part of the definition of that same function. Thus the
definition of GNU (the source of much free software) is said to be recursive because GNU stands for
'GNU's Not Unix'. ie GNU is part of the definition of GNU!

The key to making this work is that there must be a ter minating condition such that the function
branches to a non-recursive solution at some point. (The GNU definition fails this test and so gets
stuck in an infinite loop).

Let's look at a simple example. The mathematical factorial function is defined as being the product of
all the numbers up to and including the argument, and the factoria of 1 is 1. Thinking about this, we
see that another way to express this is that the factorial of N is equal to N times the factorial of (N-1).

Thus:

1 =1

2 =1 x 2 =2

3 =1 x2x3=2 x3 =26

Nl =1x2x3X.... (N2) x (N1) x N=(N1)! x N

So we can express this in Python like this:

def factorial(n):
if n== 1.
return 1
el se:
return n * factorial(n-1)

Now because we decrement N each time and we test for N equal to 1 the function must compl ete.
Thereisasmall bug in this definition however, if you try to call it with a number less than 1 it goes
into an infinite loop! To fix that change the test to use "<=" instead of "==". This goes to show how
easy it is to make mistakes with terminating conditions, this is probably the single most common cause
of bugs in recursive functions. Make sure you test all the values around your terminating point to
ensure correct operation.

D:\DOC\HomePage\l 2p\tutrecur.htm Page 191

Recursion 12/04/2010

Let's see how that works when we execute it. Notice that the return statement returnsn * (t he
result of the next factorial call) Soweget:

factorial (4) = 4 * factorial (3)
factorial (3) = 3 * factorial (2)
factorial (2) = 2 * factorial (1)
factorial (1) =1

So Python now works its way back up substituting the val ues:

factorial(2) =2 * 1 =2
factorial(3) =3 * 2 =6
factorial (4) =4 * 6 = 24

Writing the factorial function without recursion actually isn't that difficult, try it as an exercise.
Basically you need to loop over al the numbers up to N multiplying as you go. However as we'll see
bel ow some functions are much harder to write without recursion.

Recursing over lists

The other area where recursion is very useful isin processing lists. Provided we can test for an empty
list, and generate alist minusits first e ement we can use recursion easily. In Python we do that using
atechnique called dicing. Thisis explained fully in the Python manual but for our purposes all you
need to know is that using an "index" of [1:] onalist returns all of the e ements from 1 to the end of
thelist. Soto get thefirst element of alist called L:

first = L[O] # just use normal indexing

And to get therest of thelist:

butfirst = L[1:] # use slicing to get elenents 1,2, 3,4...

Let'stry it out at the Python prompt, just to reassure ourselves that it works:
>>> L =[1, 2, 3,4, 5]

>>> print(L[O])

1

>>> print(L[1:])
[2,3,4,5]

OK, let's get back to using recursion to print lists. Consider thetrivial case of printing each e ement of
alist of strings using a function printList:
def printList(L):

if L:

print(L[O])
printList(L[1:])

If L istrue- non empty - we print the first e ement then process the rest of thelist like this:

NON PYTHON PSEUDO CCDE
PrintList([1,2,3])

D:\DOC\HomePage\l 2p\tutrecur.htm Page 192

Recursion 12/04/2010

prints [1,2,3][0] => 1
runs printList([21,2,3][1:]) => printList([2,3])
=> we're now in printList([2,3])
prints [2,3][0] => 2
runs printList([2,3][1:]) => printList([3])
=> we are now in printList([3])
prints [3][0] => 3
runs printList([3][1:]) => printList([])
=> we are nowin printList([])
"if L" is false for an enpty list, so we return None
=> we are back in printList([3])
it reaches the end of the function and returns None
=> we are back in printList([2,3])
it reaches the end of the function and returns None
=> we are back in printList([1,2,3])
it reaches the end of the function and returns None

[Note: The above explanation isadapted from one given by Zak Arntson on the Python Tutor mailing list, July
2003]

For asimplelist that's atrivia thing to do using a simple for loop. But consider what happens if the
List is complex and contains other lists within it. If we can test whether anitemisaList using the
built-int ype() functionandifitisalist thenwecancall pri nt Li st () recursivey. If it wasn't alist
we simply print it. Let's try that:

def printList(L):
#if its enpty do nothing
if not L: return
#if it's alist call printList on 1st el enent

if type(L[0]) == type([]):

printList(L[O])
el se: #no list so just print

print(L[O]) # now process the rest of L
printList(L[21:])

Now if you try to do that using a conventional |oop construct you'll find it very difficult. Recursion
makes a very complex task comparatively simple.

Thereis acatch (of course!). Recursion on large data structures tends to eat up memory so if you are
short of memory, or have very large data structures to process the more complex conventional code
may be safer.

Finally, both VBScript and JavaScript support recursion too. However since thereis little to say that
has not aready been said | will leave you with a recursive version of the factorial function in each
language:

<script type="text/vbscript">
Function factorial (N
if N <=1 Then

Factorial =1
El se
Factorial = N * Factorial (N-1)
End If
End Function
Document . Wite "7 =" & CStr(Factorial (7))

</script>

D:\DOC\HomePage\l 2p\tutrecur.htm Page 193

Recursion 12/04/2010

<script type="text/javascript">
function factorial (n){

if (n<=1)
return 1;
el se
return n * factorial (n-1);
b
document .wite("6! =" + factorial (6));
</script>

OK, let's now take another leap into the unknown as we introduce Functional Programming.
Things to Remember
* Recursive functions call themselves within their own definition
* Recursive functions must have a non-recursive terminating condition or an infinite loop will

occur.
* Recursion is often, but not always, memory hungry

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePage\l 2p\tutrecur.htm Page 194

Introduction to Functional Programming 12/04/2010
Functional Programming

What will we Cover?

The difference between Functional and more traditional programming styles
Python FP functions and techniques

Lambda functions

Short Circuit Boolean evaluation and conditional expressions

Programs as expressions

In thistopic welook at how Python can support yet another programming style: Functional Programming(FP). As
with Recursion thisisa genuinely advanced topic which you may wish to ignorefor the present. Functional
techniques do have some usesin day to day programming and the supportersof FP believeit to be a fundamentally
better way to develop software.

What is Functional Programming?

Functional programming should not be confused with imperative (or procedural) programming.
Neither isit like object oriented programming. It is something different. Not radically so, sincethe
concepts that we will be exploring are familiar programming concepts, just expressed in a different
way. The philosophy behind how these concepts are applied to solving problemsis aso alittle
different.

Functional programming is all about expressions. In fact another way to describe FP might be to term

it expression oriented programming since in FP everything reduces to an expression. Y ou should

recall that an expression is a collection of operations and variables that resultsin asingle value. Thus
X == isaboolean expression. 5 + (7-Y) isanarithmetic expression. And" Hel | o

wor | d". upper case() isastringexpression. Thelatter is also afunction call (Or morestrictly a

method call) on the string object " Hel | o wor | d" and, as we shall see, functions are very important

in FP (Y ou might already have guessed that from the name!).

Functions are used as objects in FP. That is they are often passed around within a program in much
the same way as other variables. We have seen examples of thisin our GUI programs where we
assigned the name of afunction to the command attribute of a Button control. We treated the event
handler function as an object and assigned a reference to the function to the Button. This idea of
passing functions around our programis key to FP.

Functional Programs also tend to be heavily List oriented.

Finally FP tries to focus on the what rather than the how of problem solving. That is, a functional
program should describe the problem to be solved rather than focus on the mechanism of solution.
There are several programming languages which aim to work in this way, one of the most widdly used
is Haskdl and the Haskell web site (www.haskell.org) has numerous papers describing the
philosophy of FP as well as the Haskell language. (My personal opinion is that this goal, however
laudable, is rather overstated by FP's advocates.)

A pure functional program is structured by defining an expression which captures the intent of the
program. Each term of the expression isin turn a statement of a characteristic of the problem (maybe
encapsul ated as another expression) and the evaluation of each of these terms eventually yields a
solution.

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 195

Introduction to Functional Programming 12/04/2010

Wéll, that's the theory. Does it work? Y es, sometimes it works very well. For some types of problem
it isanatural and powerful technique. Unfortunately for many other problemsit requires afairly
abstract thinking style, heavily influenced by mathematical principles. The resultant code is often far
from readabl e to the layman programmer. The resultant code is also very often much shorter than the
equivalent imperative code and more reliable.

It is these | atter qualities of conciseness and reliability that have drawn many conventional imperative
or object oriented programmers to investigate FP. Even if not embraced whole heartedly there are
several powerful tools that can be used by all.

FP and Réliability

Therdiability of Functional Programs comes in part from the very close relationship between FP
constructs and formal specification languages such as Z or VDM. If aproblemis specified in a formal
language it is afairly straightforward step to translate the specification into an FP language like
Haskell. Of courseif the original specification iswrong then the resultant program will merely
accurately reflect the error!

This principle is known in computer science as " Garbage In, Garbage Out". The inherent difficulty
of expressing system reguirements in a concise and unambiguous manner remains one of the greatest
challenges of software engineering.

How does Python doit?

Python provides several functions which enable a functional approach to programming. These
functions are al convenience features in that they can be written in Python fairly easily. What is more
important however is theintent implicit in their provision, namely to allow the Python programmer to
work in a FP manner if he/she wishes.

We will ook at some of the functions provided and see how they operate on some sample data
structures that we define as:

spam = [' pork', ' ham ,'spices']

nunbers = [1, 2, 3, 4, 5]

def eggs(iten):
return item

map(aFunction, aSequence)

This function applies a Python function, aFunct i on to each member of aSequence. The expression:
L = map(eggs, spam

print(list(L))

Resultsin anew list (in this caseidentical to spam) being returned in L. Notice that we passed the
function eggs() intothemap() function asavalue. (That iswe didn't use parentheses to execute the
function code, we just used its name as a reference to the function.) Y ou might recall we did the same
thing with event handlers in the GUI Topic. This ability to treat functions as values is one of the key
features of Functional Programming.

We could have achieved the same effect by writing:

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 196

Introduction to Functional Programming 12/04/2010

for i in spam
L. append(i)
print(L)

Notice however, that the map function allows us to remove the need for a nested block of code. From
one point of view that reduces the complexity of the program by one level. W€l seethat as a
recurring theme of FP; that use of the FP functions reduces the rel ative complexity of the code by
eliminating blocks.

filter (aFunction, aSequence)

Asthe namesuggestsfi | t er extracts each e ement in the sequence for which the function returns
Tr ue. Consider our list of numbers. If we want to create a new list of only odd numbers we can
produceit like so:

def isQdd(n): return (n% != 0) # use nod operator
L =filter(isCdd, nunbers)
print(list(L))

Again notice that we pass the name of thei sQdd functionintofi | t er asanargument value rather
than callingi sQdd() asafunction.

Alternatively we can write:

def isQdd(n): return (n% != 0)

for i in nunbers:
if isQdd(i):
L. append(i)
print(L)

Again notice that the conventional code requires two levels of indentation to achieve the same result.
Again the increased indentation is an indication of increased code complexity.

There are afew other functional programming toolsin amodule called f unct ool s which you might
like to import and explore at the >>> prompt. (Remember di r () and hel p() areyour friends.)

lambda

One feature you may have noticed in the examples so far is that the functions passed to the FP
functions tend to be very short, often only asingle line of code. To save the effort of defining lots of
very small functions Python provides another aid to FP - | anbda. The name lambda comes from a
branch of mathematics called Lambda Cal culus which uses the Greek |etter Lambda to represent a
similar concept.

Lambdais aterm used to refer to an anonymous function, that is, a block of code which can be
executed as if it were afunction but without a name. Lambdas can be defined anywhere within a
program that alegal Python expression can occur, which means we can use them inside our FP
functions.

A Lambda looks like this:

| anbda <aParaneterList> : <a Python expression using the paraneters>
Thus thei sQdd function above could be rewritten as:

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 197

Introduction to Functional Programming 12/04/2010
isOdd = lanbda j: joR '= 0

And we can avoid the definition line completely by creating the | anbda withinthecall tofilter,
like so:

L=~"Filter(lanbda j: j9% != 0, spam
print(list(L))

And the call to map can be done using:

L = map(l anbda n: n, nunbers)
print(list(L))

By the way, you may have noticed that we have been explicitly converting the results of map() and
filter() tolists. Thisisbecausermap andfi |t er areactualy classes that return instances of
something called an iterator. Aniterator is basically something that acts like alist when used in aloop
and can be converted to alist but is more efficient in the way it uses memory. Our old friend

range() isaso aniterator. Python makes it possible to create your own iterators, should you need
to, but | won't be discussing that in the tutorial.

List Comprehension

List comprehension is a technique for building new lists borrowed from Haskell and introduced in
Python since version 2.0. It has a slightly obscure syntax, similar to mathematical set notation. It looks
likethis:

[<expression> for <value> in <collection> if <condition>]
Which is equivalent to:

L =] _ _

for value in collection:

if condition:
L. append(expr essi on)

As with the other FP constructs this saves some lines and two leves of indentation. Let's look at some
practical examples.

First |et's create alist of all the even numbers:
>>> [n for nin range(10) if n %2 == 0]
[0, 2, 4, 6,

That says we want alist of values (n) wheren is selected fromtherange0-9 andniseven(n % 2 ==
0).

The condition at the end could, of course, be replaced by a function, provided the function returns a
value that Python can interpret as boolean. Thus looking again at the previous example we could
rewriteit as:

>>>def isEven(n): return ((n%) == 0)
>>> [n for nin range(10) if isEven(n)]

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 198

Introduction to Functional Programming 12/04/2010

[0, 2, 4, 6, 8]

Now let's create alist of the squares of the first 5 numbers:

>>> [n*n for n in range(5)]
[0, 1, 4, 9, 16]

Noticethat thefinal if clauseis not needed in every case. Heretheinitial expressionisn*n and we use
all of the values from the range.

Finally let's use an existing collection instead of the range function:

>>> values = [1, 13, 25, 7]
>>> [x for x in values if x < 10]
[1, 7]

This could be used to replace the following filter function:

>>> print(list(filter(lanmbda x: x < 10, values)))
[1, 7]

List comprehensions are not limited to one variable or one test however the code starts to become
very complex as more variables and tests are introduced.

Whether comprehensions or the traditional functions seem most natural or appropriate to you is
purely subjective. When building a new collection based on an existing collection you can use either
the previous FP functions or the new list comprehensions. When creating a completely new collection
it isusually easier to use a comprehension.

Remember though that while these constructs may seem appealing, the expressions needed to get the
desired result can become so complex that it's easier to just expand them out to their traditional
python equivalents. Thereis no shame in doing so - readability is always better than obscurity,
especialy if the obscurity is just for the sake of being clever!

Other constructs

Of course while these functions are useful in their own right they are not sufficient to allow a full FP
style within Python. The control structures of the language also need to be altered, or at |east
substituted, by an FP approach. One way to achieve thisis by applying a side effect of how Python
eval uates boolean expressions.

Short Circuit evaluation

Because Python uses short circuit evaluation of boolean expressions certain properties of these
expressions can be exploited. To recap on short-circuit evaluation: when a boolean expression is
evaluated the evaluation starts at the left hand expression and proceeds to the right, stopping when it
is no longer necessary to evaluate any further to determine the final outcome.

Taking some specific examples |et's see how short circuit eval uation works:

>>> def TRUE():
print(' TRUE)

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 199

Introduction to Functional Programming 12/04/2010
return True

>>>def FALSE():
print(' FALSE)
return Fal se

First we define two functions that tell us when they are being executed and return the value of their
names. Now we use these to explore how boolean expressions are eval uated (Note that the upper
case output is from the functions whereas the mixed case output is the result of the expression):

>>>print(TRUE() and FALSE())
TRUE

FALSE

Fal se

>>>print(TRUE() and TRUE())
TRUE

TRUE

True

>>>print(FALSE() and TRUE())
FALSE

Fal se

>>>print(TRUE() or FALSE())
TRUE

True

>>>print(FALSE() or TRUE())
FALSE

TRUE

True

>>>print(FALSE() or FALSE())
FALSE

FALSE

Fal se

Notice that only | F thefirst part of an AND expression is Tr ue then and only then will the second
part be evaluated. If thefirst part is Fal se then the second part will not be evaluated since the
expression as awhole cannot be Tr ue.

Likewisein an OR based expression if thefirst part is Tr ue then the second part need not be
evaluated since the whole must be Tr ue.

Thereis one other feature of Python's eval uation of boolean expressions that we can take advantage
of, namely that when eval uating an expression Python does not simply return Tr ue or Fal se, rather
it returns the actual value of the expression. Thus if testing for an empty string (which would count as
Fal se) likethis:

if "This string is not enpty": print("Not Enmpty")
el se: print("No string there")

Python just returns the string itself!

We can use these properties to reproduce branching like behavior. For example suppose we have a
piece of code like the following:

if TRUE(): print("It is True")
else: print("It is False")

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 200

Introduction to Functional Programming 12/04/2010

We can replace that with the FP style construct:

V= (TRUE() and "It is True") or ("It is False")
print(V)

Try working through that example and then substitute the call to TRUE() with acall to FALSE() .

Thus by using short circuit evaluation of boolean expressions we have found away to eiminate
conventional if/else statements from our programs. However, these tricks can backfire so in recent
versions of Python a new construct has been introduced that allows us to write an if/else condition as
an expression, and it is called a conditional expression, and it looks like this:

result = <True expression> if <test condition> el se <Fal se expressi on>

And areal example looks like this:

>>> print("This is True" if TRUE() else "This is not printed")
TRUE
This is True

And using the else:

>>> print("This is True" if FALSE() else "W see it this tinme")
FALSE
We see it this tine

You may recall that in the recursion topic we observed that recursion could be used to replace the
loop construct. Thus combining recursion with conditional expressions can remove all conventional
control structures from our program, replacing them with pure expressions. Thisis a big step towards
enabling pure FP style solutions.

To put all of thisinto practice let's write a completely functional style factoria program using

| anbda instead of def , recursion instead of aloop and a conditional expression instead of the usual
i f/else:

>>> factorial = lambda n: 1 if (n <= 1) else (factorial(n-1) * n)
>>> print(factorial (5))
120

And that really is all thereistoit. It may not be quite so readable as the more conventional Python
code but it does work and is a purely functional style functioninthat it is a pure expression.

Conclusions

At this point you may be wondering what exactly is the point of all of this? Y ou would not be alone.
Although FP appeals to many Computer Science academics (and often to mathematicians) most
practicing programmers seem to use FP techniques sparingly and in akind of hybrid fashion mixing it
with more traditional imperative styles as they fed appropriate.

When you have to apply operations to eementsin alist such that map or fi | t er seemthe natural
way to express the solution then by all means use them. Just occasionally you may even find that
recursion is more appropriate than a conventional loop. Even more rarely will you find a use for short

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 201

Introduction to Functional Programming 12/04/2010

circuit evaluation or, better, a conditional expression rather than conventions if/else - particularly if
required within an expression. As with any programming tool, don't get carried away with the
philosophy, rather use whichever tool is most appropriate to the task in hand. At least you know that
alternatives exist!

Thereis onefina point to make about | anbda. Thereis one area outside the scope of FP that lambda
finds areal use and that's for defining event handlers in GUI programming. Event handlers are often
very short functions, or maybe they simply call some larger function with afew hard-wired argument
values. In either case alambda function can be used as the event handler which avoids the need to
define lots of small individua functions and fill up the name space with names that would only be used
once. Remember that a lambda statement returns a function object. This function object is the one
passed to the widget and is called at the time the event occurs. If you recall how we define a Button
widget in Tkinter, then alambda would appear like this:

def wite(s): print(s)
b = Button(parent, text="Press M",

command = lanbda : wite("l got pressed!"))
b. pack()

Of coursein this case we could have done the same thing by just assigning a default parameter value
towite() andassigningw it e to the conmand value of the But t on. However even here using the
| anbda form gives us the advantage that the singlewr i t e() function can now be used for multiple
buttons just by passing a different string from the | anbda. Thus we can add a second button:

b2 = Button(parent, text="O M",
command = lanbda : wite("So did I!"))
b2. pack()

We can aso employ | anbda when using the bind technique, which sends an event object as an
argument:

b3 = Button(parent, text="Press nme as well")
b3. bi nd(<Button-1>, |lanbda ev : wite("Pressed"))

Wéll, that really is that for Functional Programming. There are lots of other resources if you want to
look deeper into it, some are listed below. Neither VBScript nor JavaScript directly support FP but
both can be used in afunctional style by a determined programmer. (In fact many of the deeper
aspects of JavaScript are functional by nature.) The key being to structure your programs as
expressions and not to allow side-effects to modify program variables.

Other resources

* Thereisan excelent article by David Mertz on the IBM web site about FP in Python. It goes
into more detail about control structures and provides more detailed examples of the concept.

¢ Other languages support FP even better than Python. Examples include:: Lisp, Scheme,
Haskell, ML and some others. The Haskell web site in particular includes awealth of
information about FP.

® Thereisalso anewsgroup, conp. | ang. functi onal where you can catch up on the | atest
happenings and find a useful FAQ.

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 202

Introduction to Functional Programming 12/04/2010

* Thereare several book references to be found on the above reference sites. One classic book,
which is not entirdly about FP but does cover the principles well is Sructure & Interpretation
of Computer Programs by Abelman, Sussman and Sussman. This text focuses on Scheme, a
version of Lisp favoured by many academics. My personal primary source has been the book
The Haskell School of Expression by Paul Hudak which is, naturally enough, about Haskell.

If anyone el se finds a good reference drop me an email viathe link below.
Things to Remember

* Functional programs are pure expressions

® Python providesmap, filter andreduce aswdl asli st conprehensi ons to support
FP style programming

® | anbda expressions are anonymous (i.e. unnamed) blocks of code that can be assigned to

variables or used as functions

* Boolean expressions are evaluated only as far as necessary to ensure the result, which fact
enables them to be used as control structures

* By combining the FP features of Python with recursion it is possible (but usually not
advisable) to write amost any function in an FP style in Python.

Previous Next Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePaga\l 2p\tutfctnl .htm Page 203

A Case Study 12/04/2010

A Case Study

For this case study we are going to expand on the word counting program we developed earlier. We
are going to create a program which mimics the Unix we programin that it outputs the number of
lines, words and charactersin afile. We will go further than that however and also output the number
of sentences, clauses and paragraphs. We will follow the development of this program stage by stage
gradually increasing its capability then moving it into a module to make it reusable, turning it into an
OO implementation for maximum extendability and finally wrapping it in a GUI for ease of use.

Although we will be using Python throughout it would be possible to build JavaScript or VB Script
versions of the program with only a little adaptation.

Additional features that could be implemented but will be |€eft as exercises for the reader are to

* calculate the FOG index of the text, where the FOG index can be defined (roughly) as:

(Average words per sentence) + (Percentage of words nore than 5 letters) *
and indicates the complexity of the text,
¢ calculate the number of unigue words used and their frequency,

® create a new version which analyzes RTF files.

Counting lines, words and characters

Let's revisit the previous word counter:

i mport string

def numaords(s):
list = string.split(s)
return len(list)

inp = open("menu.txt","r")
total =0
accunul ate totals for each line
for line in inp.readlines():

total = total + nummaords(line)
print "File had %d words" %tota

i np. cl ose()

We need to add a line and character count. The line count is easy since we |oop over each line we just
need a variable to increment on each iteration of the loop. The character count is only marginally
harder since we can iterate over thelist of words adding their lengths in yet another variable.

We al so need to make the program more general purpose by reading the name of the file from the
command line or if not provided, prompting the user for the name. (An alternative strategy would be
to read from standard input, which is what the real we does.)

So thefinal we looks like:

i mport sys, string

D:\DOC\HomePaga\l 2p\tutcase htm Page 204

A Case Study 12/04/2010

Get the file nane either fromthe command-1ine or the user
if len(sys.argv) != 2:

nane = input ("Enter the file nane: ")
el se:

nane = sys.argv[1]

inp = open(nane,"r")

initialize counters to zero; which also creates vari abl es
words, lines, chars =0, 0, O

for line in inp:
lines += 1

Break into a list of words and count them

list = 1line.split()

words += len(list)

chars += len(line) # Use original |ine which includes spaces etc.
print "% has % lines, % words and % characters" % (nane, |ines, words, chars)
i np. cl ose()

If you are familiar with the Unix we command you know that you can pass it a wild-carded filename
to get stats for all matching files as well as agrand total. This program only caters for straight
filenames. If you want to extend it to cater for wild cards take a look at the glob module and build a
list of names then simply iterate over thefilelist. You'll need temporary counters for each file then
cumul ative counters for the grand totals. Or you could use a dictionary instead...

Counting sentencesinstead of lines

When | started to think about how we could extend this to count sentences and words rather than
‘character groups' as above, my initial ideawas to first loop through the file extracting the lines into a
list then loop through each line extracting the words into another list. Finally to process each 'word' to
remove extraneous characters.

Thinking about it alittle further it becomes evident that if we simply collect the lines we can analyze
the punctuation characters to count sentences, clauses etc. (by defining what we consider a
sentence/clause in terms of punctuation items). Let's try sketching that in pseudo-code:

foreach line in file:
i ncrenent |ine count
if line enpty:
i ncrenent paragraph count
count the clause term nators
count the sentence term nators

report paras, |lines, sentences, clauses, groups, words.

Wewill beusing regular expressions in the solution here, it may be worth going back and reviewing
that topic if you aren't sure how they work. Now lets try turning our pseudo code into real code:

i mport re,sys

Use Regul ar expressions to find the tokens

sentenceStops = ".?!"

cl auseStops = sentenceStops + ",;:\-" # escape '-' to avoid range effect
sentenceRE = re.compil e("[%]" % sentenceStops)

cl auseRE = re.conpile("[%]" % cl auseSt ops)

D:\DOC\HomePaga\l 2p\tutcase htm Page 205

A Case Study 12/04/2010

Cet file name from conmandl i ne or user
if len(sys.argv) != 2:

nane = input ("Enter the file nane: ")
el se:

nane = sys.argv[1]

inp = open(nane,"r")

Now initialize counters

lines, words, chars =0, 0, O

sentences, clauses = 0, O

paras = 1 # assune always at |least 1 para

process file
for line in inp:
lines += 1
if line.strip() =="": # enpty line
paras += 1
words += len(line.split())
chars += len(line.strip())

sentences += | en(sentenceRE. findall (line))
cl auses += len(clauseRE. findall (line))
Display results
print "'’
The file % contains:
%\t characters
%\t words
%I\t lines in
%\t paragraphs with
%\t sentences and
%\t cl auses.
% (nane, chars, words, lines, paras, sentences, clauses)

There are severa points to note about this code:

* It uses regular expressions to make the searches most efficient. We could have done the same
thing using simple string searches, but we would have needed to search for each punctuation
character separately. Regular expressions maximize the efficiency of our program by allowing
asingle search to find all of the items we want. However regular expressions are al so easy to
mess up. My first attempt | forgot to escape the '-' character and that then got treated as a
range by the regular expression, with the result that any numbers in the file got treated as
clause separators! After much head scratching it took a call to the Python community to spot
themistake. A quick '\' character inserted and suddenly all was well again.

* Thisprogramis effectivein that it does what we want it to do. It is less effective from the
re-usability point of view because there are no functions that we can call from other programs,
it isnot yet a modular program.

* The sentence tests are less than perfect. For example abbreviated titles such as "Mr." will
count as a sentence because of the period. We could improve the regular expression by
searching for a period, followed by one or more spaces, followed by an uppercase | etter, but
our "Mr." example will still fail since"Mr." is usualy followed by a name which begins with an
uppercase letter! This servestoillustrate how difficult it isto parse natural languages
effectively.

As the case study progresses we will address the second point about re-usability and also start to look
at theissues around parsing text in alittle more depth, although even by the end we will not have
produced a perfect text parser. That is atask that takes us well beyond the sort of programs a
beginner might be expected to write.

D:\DOC\HomePaga\l 2p\tutcase htm Page 206

A Case Study 12/04/2010
Turning it into a module

To make the code we have written into a modul e there are a few basic design principles that we need
to follow. First we need to put the bulk of the code into functions so that users of the module can
access them. Secondly we need to move the start code (the bit that gets the file name) into a separate
piece of code that won't be executed when the function is imported. Finally we will |eave the global
definitions as module level variables so that users can change their valueif they want to.

Let's tackle these items one by one. First move the main processing block into afunction, we'll call it
anal yze() . Well pass afile object into the function as a parameter and the function will return the
list of counter valuesin atuple.

It will ook likethis:

BHAHBHBHHHHHHBHBHBHBHBHBHBHBH

Mbdul e: gr anmmar

Created: A J. Gauld, 2004,8,8

Functi on:

Provides facilities to count words, |lines, characters,

par agr aphs, sentences and 'clauses' in text files.

It assunmes that sentences end with [.!?] and paragraphs
have a bl ank |line between them A 'clause' is sinply

a segnent of sentence separated by punctuation. The
sentence and cl ause searches are regul ar expression
based and the user can change the regex used. Can al so
be run as a program

HHHBHHBHH R TR R R

i mport re, sys

HHEHHFHFHEHFHEHFHTEH

HHHHHHHHEH BB HHHEHHH R R HHHH
initialize global variables
paras = 1 # W will assunme at |east 1 paragraph
i nes, sentences, clauses, words, chars = 0,0,0,0,0
sentenceMarks = '.?!"
cl auseMarks = "&();:,\-' + sentenceMarks
sentenceRE = None # set via a function cal
cl auseRE = None
format = '""'
The file % contai ns:
%\t characters
%\t words
¢\t lines in
%\t paragraphs with
%\t sentences and
%¢\t cl auses.

HHHHBHHHH B HEH B HEH B HEH B HEH B R
Now define the functions that do the work

setCounters allows us to reconpile the regex if we change
the token lists
def set CounterRES():
gl obal sentenceRE, cl auseRE
sentenceRE = re.compile('[%] + % sentenceMarKks)
clauseRE = re.conpile(' [%] + % cl auseMarKks)

D:\DOC\HomePaga\l 2p\tutcase htm Page 207

A Case Study 12/04/2010

reset counters gets called by analyze()

def resetCounters():
chars, words, lines, sentences, clauses = 0,0,0,0,0
paras = 1

reportStats is intended for the driver
code, it offers a sinple text report
def reportStats(theFile):
print format % (theFile.name, chars, words, lines,
paras, sentences, clauses)

anal yze() is the key function which processes the file
def anal yze(theFile):
gl obal chars, words, | i nes, par as, sent ences, cl auses
check if REs already conpiled
if not (sentenceRE and cl auseRE)
set Count er REs()
reset Counters()
for line in theFile:
lines += 1
if line.strip() =="": # enpty line
paras += 1
words += len(line.split())
chars += len(line.strip())
sentences += | en(sentenceRE. findall (

line))
cl auses += len(clauseRE. findall (line))

Make it run if called fromthe conmand Iine (in which

case the "magic' _ _nane__ variable gets set to ' __main__
if _name__ =="_min__":
if len(sys.argv) != 2:
print "Usage: python grammar.py <fil enane>"
sys.exit()
el se:

aFile = open(sys.argv[1],"r")
anal yze(aFil e)
reportStats(aFile)
aFil e. cl ose()

First thing to notice is the commenting at the top. Thisis common practiceto let readers of thefile get
an idea of what it contains and how it should be used. The version information (Author and date) is
useful too if comparing results with someone & se who may be using a more or |ess recent version.

Thefinal section is afeature of Python that calls any module |loaded at the command line
" __main__".Wecantest thespecia, built-in__name__ variableand, if it'smai n, we know that
the moduleis not just being imported, but run, and so we execute the trigger code inside thei f block.

This trigger code includes a user friendly hint about how the program should be run if no filenameis
provided, or indeed if too many filenames are provided, it could instead - or in addition - ask the user
for afilename usingi nput () .

Noticethat theanal yze() function uses theinitialization functions to make sure the counters and
regular expressions are all set up properly beforeit starts. This caters for the possibility of a user
calling analyze several times, possibly after changing the regular expressions used to count clauses and
sentences.

Finally note the use of global to ensure that the module level variables get set by the functions,
without global we would create local variables and have no effect on the module level ones.

D:\DOC\HomePaga\l 2p\tutcase htm Page 208

A Case Study 12/04/2010
Using the grammar module

Having created a module we can use it as a program at the OS prompt as before by typing:

C.\> python grammar. py spam t xt

However provided we saved the module in a location where Python can find it, we can also import
the modul e into another program or at the Python prompt. Lets try some experiments based on a test
file called spam.txt which we can create and looks like this:

This is a file called spam It has
3 lines, 2 sentences and, hopefully,
5 cl auses.

Now, let's fire up Python and play alittle:

>>> jnport granmmar

>>> granmmar . set Count er REs()
>>> txtFile = open("spamtxt")
>>> granmmar . anal yze(txtFil e)
>>> gramar.reportStats()

The file spamtxt contains:

80 characters

16 wor ds

3 lines in

1 par agraphs with
2 sent ences and

1 cl auses.

>>> # redefine sentences as ending in vowel s!
>>> grammar. sentenceMarks = ' aei ou’

>>> granmmar . set Count er REs()

>>> granmmar. anal yze(txtFil e)

>>> print granmar.sentences

21

>>> txtFile.close()

As you can see redefining the sentence tokens changed the sentence count radically. Of course the
definition of a sentenceis pretty bizarre but it shows that our module is usable and moderately
customi zable too. Notice too that we were able to print the sentence count directly, we don't need to
usethe provided r eport St at s() function. This demonstrates the value of an important design
principle, namely separation of data and presentation. By keeping the display of data separate from
the cal cul ation of the data we make our module much more flexible for our users.

To conclude our course we will rework the grammar module to use OO techniques and then add a
simple GUI front end. In the process you will see how an OO approach results in modules which are
even more flexible for the user and more extensible too.

Classes and objects
One of the biggest problems for the user of our module is the reliance on global variables. This means

that it can only analyze onefile at atime, any attempt to handle more than that will result in the global
values being over-written.

D:\DOC\HomePaga\l 2p\tutcase htm Page 209

A Case Study

12/04/2010

By moving these globals into a class we can then create multiple instances of the class (one per file)
and each instance gets its own set of variables. Further, by making the methods sufficiently granular
we can create an architecture whereby it is easy for the creator of a new type of document object to
modify the search criteriato cater for the rules of the new type. (eg. by rejecting all HTML tags from

the word list we could process HTML files aswell as plain ASCII text).

Our first attempt at this creates a Document class to represent the file we are processing:

#!' [usr/ | ocal / bin/ python

HHHBHHBHH AR R R H R

Modul e: docunent. py

Author: A J. Gauld

Date: 2004/ 08/ 10

Version: 3.0

HHHBHHBHH AR R R R

Thi s nodul e provi des a Docunent class which
can be subcl assed for different categories of
Docunent (text, HTM., Latex etc). Text and HTM. are
provi ded as sanpl es.

Primary services avail abl e include
- analyze(),
- reportStats().
HBHHHBHHH PR HHH B H AR
i mport sys,re

HHEHHHFHHH

Provides 2 classes for parsing "text/files.
A Ceneric Docunent class for plain ACI I text,
and an HTM.Docurnent for HTM. fil es.

cl ass Document:

sentenceMarks = "'?!."
cl auseMarks = "&()\-;:," + sentenceMarks

def __init__(self, filename):
self.filenane = fil ename
sel f.set REs()
sel f.set Counters()

def setCounters(self):
self.paras =1
self.lines = self.getLines()
sel f.sentences, self.clauses, self.words, self.chars = 0,0,0,0

def setREs(self):
sel f.sentenceRE = re.conpile(' [%]' % Docunent.sentenceMarks)
self.clauseRE = re.conpile(' [%]' % Docunent. cl auseMar ks)

def getLines(self):
infile = open(self.filenane)
lines = infile.readlines()
infile.close()
return lines

def anal yze(self):
sel f.set Counters()
for line in self.lines:
sel f.sentences += |l en(sel f.sentenceRE. finda
sel f.clauses += len(self.clauseRE.findall (I
self.words += len(line.split())

I
n

D:\DOC\HomePage\l 2p\tutcase htm

Page 210

A Case Study 12/04/2010

sel f.chars += Ien(Ilne strip())
if line.strip() ==
self.paras += 1

def fornatResuIts(seIf)

format = "'

The file % contai ns:
%\t characters
%¢\t words
%¢\t lines in
%\t paragraphs with
%\t sentences and
%¢\t cl auses.

return format % (self.filenane, self.chars,
sel f.words, len(self.lines),
sel f. paras, self.sentences, self.clauses)

cl ass Text Docunent (Docurnent) :
pass

cl ass HTM_Docunent (Docurnent) :
pass

if _name__ =="__main :

if len(sys.argv) ==
doc = Docunent (sys. argv[l])
doc. anal yze()
print doc. format Resul ts()

el se:
print "Usage: python docunent3.py "
print "Failed to analyze file"

There are several points to notice here. First is the use of class variables at the beginning of the class
definition to store the sentence and clause markers. Class variables are shared by all the instances of
the class so they are a good place to store common information. They can be accessed by using the
class name, as I've done here, or by using the usual sdlf. | prefer to use the class name because it
highlights the fact that they are class variables.

I've also added a new method, set Count er s() for flexibility when we come to deal with other
document types. It's quite likely that we will use a different set of counters when analyzing HTML
files - maybe the number of tags for example. By pairing up the set Count er s() and

f or mat Resul t s() methods and providing anew anal yze() method we can pretty much deal with
any kind of document.

The other methods are more stable, reading the lines of afileis pretty standard regardless of file type
and setting the two regular expressions is a convenience feature for experimenting, if we don't need to
we won't.

As it stands we now have functionality identical to our module version but expressed as a class. But
now to really utilize OOP style we need to deconstruct some of our class so that the base level or
abstractDocument only contains the bits that are truly generic. The Text handling bits will moveinto
the more specific, or concrete Text Docunent class. Well see how to do that next.

Text Document

D:\DOC\HomePage\l 2p\tutcase htm Page 211

A Case Study 12/04/2010

We areall familiar with plain text documents, but it's worth stopping to consider exactly what we
mean by a text document as compared to a more generic concept of a document. Text documents
consist of plain ASCII arranged in lines which contain groups of |etters arranged as words separated
by spaces and other punctuation marks. Groups of lines form paragraphs which are separated by blank
lines (other definitions are possible of course, but these are the ones | will use.) A vanilla document is
afile comprising lines of ASCII characters but we know very little about the formatting of those
characters within the lines. Thus our vanilla document class should really only be able to open afile,
read the contents into alist of lines and perhaps return counts of the number of characters and the
number of lines. It will provide empty hook methods for subclasses of document to implement.

On the basis of what we just described a Document class will look like:

HHHHBHHHH B HEH B HEH B HEH B HEH B HEH
Modul e: docunent
Created: A J. Gauld, 2004/8/15

#
#
Functi on:

Provides abstract Document class to count |ines, characters
and provi de hook nethods for subclasses to use to process

nore specific docunent types

HHHBHHBHH R R R

cl ass Docunent:
def _ init_ (self,filenane):
self.filename = fil enane
self.lines = self.getLines()
self.chars = reduce(lanbda [1,12: 11412, [len(L) for L in self.lines])
self. _initSeparators()

def getLines(self):
f = open(self.filenane,'r")
lines = f.readlines()
f.close()
return lines

list of hook nethods to be overridden

def formatResults(self):

return "% contains $d lines and % characters" % (len(self.lines),
sel f. chars)

def _initSeparators(self): pass

def anal yze(self): pass

Note that the _i ni t Separ at or s method has an underscore in front of its name. Thisisastyle
convention often used by Python programmers to indicate a method that should only be called from
inside the class's methods, it is not intended to be accessed by users of the object. Such amethod is
sometimes called protected or private in other languages.

Also noticethat | have used the functional programming function r educe() aong with a

| anbda functionand al i st conpr ehensi on to calculate the number of characters. Recall that

r educe takes alist and performs an operation (thel anbda) on thefirst two members and inserts the
result as the first member, it repeats this until only the final result remains which is returned as the
final result of the function. In this casethelist isthelist of lengths of the lines in the file produced by
the conpr ehensi on and so it replaces the first two lengths with their sum and then gradually adds
each subsequent length until all the line lengths are processed. Actually, in this case, | could have used
the built in function sun{) to do the same thing, but | wanted to illustrate the functional
programming structures being used in areal example.

D:\DOC\HomePage\l 2p\tutcase htm Page 212

A Case Study 12/04/2010

Finally note that because this is an abstract class we have not provided a runnable option using i f
__nhanme__ == etc

Our text document now looks like:

cl ass Text Docunent (Docurnent) :
def __init_ (self,filenane):
self.paras =1
sel f.words, self.sentences, self.clauses = 0,0,0
Document. __init__ (self, filenane)

now override hooks
def formatResults(self):
format = '""
The file % contains:
%I\t characters
%\t words
%I\t lines in
%\t paragraphs with
%I\t sentences and
%\t cl auses.
return format % (self.filenane, self.chars,
sel f.words, len(self.lines),
sel f. paras, self.sentences, self.clauses)

def _initSeparators(self):
sentenceMarks = "[.!7?]"
cl auseMarks = "[.!?, & ;-]"
sel f.sentenceRE = re. conpil e(sent enceMar ks)
sel f.clauseRE = re. conpil e(cl auseMar ks)

def anal yze(self):
for line in self.lines:

sel f.sentences += | en(sel f.sentenceRE. finda
sel f.clauses += len(self.clauseRE.findall (I
self.words += len(line.split())

self.chars += len(line.strip())

if line.strip() == "":

self.paras += 1

if _name__ =="_min__":

if len(sys.argv) == 2:
doc = Text Docunent (sys.argv[1])
doc. anal yze()
print doc. format Resul ts()

el se:
print "Usage: python <docunment> "
print "Failed to analyze file"

One thing to notice s that this combination of classes achieves exactly the same as our first non-OOP
version. Compare the length of this with the origina file - building reusable objects is not chesp!
Unless you are sure you need to create objects for reuse consider doing a non-OOP version it will
probably be less work! However if you do think you will extend the design, as we will bedoing in a
moment then the extra work will repay itsef.

The next thing to consider is the physical location of the code. We could have shown two files being
created, one per class. Thisisacommon OOP practice and keeps things well organized, but at the
expense of alot of small files and alot of import statements in your code when you come to use those
classesffiles.

D:\DOC\HomePaga\l 2p\tutcase htm Page 213

A Case Study 12/04/2010

An alternative scheme, which | have used, isto treat closely related classes as a group and locate them
al inonefile, at least enough to create a minimal working program. Thus in our case we have
combined our Document and TextDocument classes in a single module. This has the advantage that
the working class provides a template for users to read as an example of extending the abstract class.
It has the disadvantage that changes to the TextDocument may inadvertently affect the Document
class and thus break some other code. Thereis no clear winner here and even in the Python library
there are examples of both styles. Pick a style and stick to it would be my advice.

One very useful source of information on this kind of text file manipulation is the book by David
Mertz called "Text Processing in Python" and it is availablein paper form as wdl as online, here,
Note however that thisis afairly advanced book aimed at professional programmers so you may find
it tough going initially, but persevere because there are some very powerful lessons contained within
it.

HTML Document

The next step in our application development is to extend the capabilities so that we can analyze
HTML documents. We will do that by creating a new class. Since an HTML document is really a text
document with lots of HTML tags and a header section at the top we only need to remove those extra
elements and then we can trest it as text. Thus we will create anew HTM_Docunent class derived
from Text Docunent . Wewill overridethe get Li nes() method that we inherit from

Docunent such that it throws away the header and all the HTML tags.

Thus HTMLDocument looks like;

cl ass HTM_Docunent (Text Docunent) :
def getLines(self):
i nes = Text Docunent. get Li nes(self)
i nes sel f. _stripHeader(lines)
i nes sel f. _stripTags(lines)
return lines

def _stripHeader(self,lines):
"'' renove all lines up until start of elenent
bodyMark = ' <body>
bodyRE = re. conpil e(bodyMark, re. | GNORECASE)
whil e bodyRE.findall (lines[0]) == []:
del 1ines[O0]
return lines

def _stripTags(self,lines):
"' remove anything between < and >, not perfect but ok for now '’
tagvark = '< +>'
tagRE = re.conpil e(tagMar k)

lines2 =[]
for line in lines:
line = tagRE. sub('"',line).strip()
if line: lines2. append(line)
return lines2

Note 1: We have used the inherited method within get Li nes. Thisis quite common practice when
extending an inherited method. Either we do some preliminary processing or, as here, we cal the
inherited code then do some extra work in the new class. This was also donein the

__init__ method of the Text Docunent class above.

D:\DOC\HomePage\l 2p\tutcase htm Page 214

A Case Study 12/04/2010

Note 2: We access the inherited get Li nes method via Text Docunent not viaDocunent (whichis
whereit is actually defined) because (a) we can only 'see’ Text Docunent inour code and (b)
Text Docunent inheritsal of Docunent 's features so in effect does have aget Li nes too.

Note 3: The other two methods are notionally private (notice the leading underscore?) and are there
to keep the logic separate and also to make extending this class easier in the future, for say an
XHTML or even XML document class? Y ou might like to try building one of those as an exercise.

Note 4: It is very difficult to accuratdy strip HTML tags using regular expressions due to the ability
to nest tags and because bad authoring often results in unescaped '<' and '>' characters looking like
tags when they are not. In addition tags can run across lines and all sorts of other nasties. A much
better way to convert HTML filesto text isto use an HTML parser such as the one in the standard
HTM_Par ser module. As an exercise rewrite the HTM_Docunent class to use the parser module to
generate the text lines.

To test our HTML Document we need to modify the driver code at the bottom of the file to look like
this.

if _name__ =="_min__":

if len(sys.argv) == 2:
doc = HTM.Docunent (sys. argv[1])
doc. anal yze()
print doc. format Resul ts()

el se:
print "Usage: python <docunment> "
print "Failed to analyze file"

Adding a GUI

To create a GUI we will use Tkinter which weintroduced briefly in the Event Driven
Programming section and further in the GUI Programming topic. This time the GUI will be slightly
more sophisticated and use a few more of the widgets that Tkinter provides.

Onething that will help us create the GUI version is that we took great care to avoid putting any print
statements in our classes, the display of output is all donein the driver code. This hel ps when we
come to use a GUI because we can use the same output string and display it in awidget instead of
printing it on stdout. The ability to more easily wrap an application in a GUI is amajor reason to
avoid the use of print statements inside data processing functions or methods.

Designing a GUI

Thefirst step in building any GUI application isto try to visualize how it will look. We will need to
specify afilename, so it will require an Edit or Entry control. We also need to specify whether we
want textual or HTML analysis, this type of 'one from many' choiceis usually represented by a set of
Radiobutton controls. These controls should be grouped together to show that they are related.

The next requirement is for some kind of display of the results. We could opt for multiple

Label controls one per counter. Instead | will use a simple text control into which we can insert
strings, thisis closer to the spirit of the commandline output, but ultimately the choice is a metter of
preference by the designer.

Finally we need a means of initiating the analysis and quitting the application. Since we will be using a
text control to display results it might be useful to have a means of resetting the display too. These
command options can all be represented by Button controls.

D:\DOC\HomePaga\l 2p\tutcase htm Page 215

A Case Study 12/04/2010

Sketching these ideas as a GUI gives us something like:

o e e e e mda e Fommee e +
| FI LENAME | O TEXT |
| | O HTML |
U U o mee e +
I I
I I
I I
I I
I I
o e e e e e eee e mdacmdaeaaaaaaa +
I
| ANALYZE RESET QUT |
I I
o e e e e e eee e mdacmdaeaaaaaaa +

Now we are ready to write some code. Let's take it step by step:

from Tki nter inmport *
i mport docunent

#H#H#H R #E CLASS DEFI NI TI ONS ########H#HBHHH AR HH R
cl ass G ammar App(Frane) :

def __init__(self, parent=0):
Frame. __init__(self, parent)
self.type = 2 # create variable with default val ue

self.master.title(' Gamrar counter')
sel f. buil dU ()

Here we have imported the Tkinter and document modules. For the former we have made all of the
Tkinter names visible within our current module whereas with the latter we will need to prefix the
names with docunent .

We have a so defined our application to be a subclass of Fr anme andthe__i nit __ method calls the
Franme. __init__ superclass method to ensurethat Tkinter is set up properly internally. We then
create an attribute which will store the document type value and finally call the bui | dul method
which creates all the widgets for us. We'll ook at bui | dUI () next:

def buil dUl (self):
Now the file information: File nanme and type
fFile = Frane(self)
Label (fFile, text="Filenane: ").pack(side="left")
self.eName = Entry(fFile)
sel f.eNane. i nsert (I NSERT, "test. htni")
sel f. eNane. pack(si de=LEFT, padx=5)

to keep the radio buttons lined up with the

nanme we need another frame

f Type = Frane(fFile, borderw dth=1, relief=SUNKEN)

sel f.rText = Radi obutton(fType, text="TEXT",
vari able = self.type, value=2
conmand=sel f. doText)

sel f.rText. pack(si de=TOP, anchor=W

sel f.rHTM. = Radi obutton(fType, text="HTM."
vari abl e=sel f.type, val ue=1
command=sel f. doHTM.)

sel f. rHTM.. pack(si de=TOP, anchor=W

make TEXT the default selection

D:\DOC\HomePaga\l 2p\tutcase htm Page 216

A Case Study 12/04/2010

sel f.rText.select()
f Type. pack(si de=Rl GHT, padx=3)
fFile. pack(side=TOPR, fill=X)

the text box holds the output, pad it to give a border
and make the parent the application frame (ie. self)
sel f.txtBox = Text(self, w dth=60, height=10)

sel f. t xt Box. pack(si de=TOP, padx=3, pady=3)

finally put some command buttons on to do the real work

fButts = Franme(self)

sel f.bAnal = Button(fButts, text="Analyze"
conmand=sel f. doAnal yze)

sel f. bAnal . pack(si de=LEFT, anchor=W padx=50, pady=2)

sel f. bReset = Button(fButts, text="Reset",
command=sel f . doReset)

sel f. bReset . pack(si de=LEFT, padx=10)

self.bQuit = Button(fButts, text="Quit",
command=sel f. doQui t)

sel f. bQuit. pack(side=RlI GHT, anchor=E, padx=50, pady=2)

fButts. pack(si de=BOTTOM fill =X)
sel f. pack()

I'm not going to explain all of that. If you've read my GUI topic it should mostly be clear but for more
detail | recommend that you take alook at the Tkinter tutorial and reference found on the
Pythonware web site. Thisis an excellent introduction and reference to Tkinter going beyond the
basics that | cover in my topic. The general principleis that you create widgets from their
corresponding classes, providing options as named parameters, then the widget is packed into its
containing frame.

The other key points to note are the use of subsidiary Fr ame widgets to hold the Radiobuttons and
Command buttons. The Radiobuttons also take a pair of optionscalled vari abl e & val ue, the
former links the Radiobuttons together by specifying the same external variable (sel f . t ype) and the
latter gives a unique value for each Radiobutton. Also notice the command=xxx options passed to the
button controls. These are the methods that will be called by Tkinter when the button is pressed. The
code for these comes next:

#H#H#H B HA R #AR#E EVENT HANDLI NG VMETHODS #######H###H#H TR HH#HRHH
time to die...
def doQuit(self):

self.quit()

restore default settings

def doReset(self):
sel f.t xt Box. del ete(1. 0, END)
sel f.rText.sel ect()

set radi o val ues
def doText(self):
self.type = 2

def doHTM_(self):
self.type = 1

D:\DOC\HomePage\l 2p\tutcase htm Page 217

A Case Study 12/04/2010

These methods are al fairly trivial and hopefully by now are self explanatory. The final event handler
is the one which does the analysis:

Create appropriate docunent type and analyze it.
then display the results in the form
def doAnal yze(self):
filename = sel f.eNane. get ()
if filename == "":
sel f.txtBox.insert(END, "\nNo fil enane provided!\n")
return
if self.type == 2:
doc = docunent . Text Docunent (fil enane)
el se:
doc = docunent. HTM.Docunent (fi | enane)
sel f.txtBox.insert(END, "\nAnalyzing...\n")
doc. anal yze()
resultStr = doc.format Resul ts()
sel f.txtBox.insert(END, resultStr)

Again you should be ableto read this and see what it does. The key points are that:

¢ it checks for avalid filename before creating the Document object.

* ltusesthesel .t ype value set by the Radiobuttons to determine which type of Document to
create.

* |t appends (the END argument to i nser t) the results to the Text box which means we can
analyze several times and compare results - one advantage of the text box versus the multiple
labdl output approach.

All that's needed now is to create an instance of the G- anmar App application class and set the event
loop running, we do this here:

myApp = Granmar App()
my App. nai nl oop()

Let'stake alook at the final result as seen under MS Windows, displaying the results of analyzing a
test HTML file,

-

& Grammar counter

Filenarne: | testH TML. ke

¢ HTML

Analyzing. ..

The file testHT ML htm containg:
30a characters

28 wiards

] lines in

2 paragraphs with
a] sentences and
a clauzes.

Analyze Feset Quit
L

D:\DOC\HomePaga\l 2p\tutcase htm Page 218

A Case Study 12/04/2010

That's it. You can go on to make the HTML processing more sophisticated if you want to. You can
create new modules for new document types. Y ou can try swapping the text box for multiple labels
packed into a frame. But for our purposes we're done. The next section offers some ideas of where to
go next depending on your programming aspirations. The main thing is to enjoy it and always
remember: the computer is dumb!

Previous References Contents

If you have any questions or feedback on this page send me mail at: alan.gauld@btinternet.com

D:\DOC\HomePaga\l 2p\tutcase htm Page 219

12/04/2010

Under Construction

D:\DOC\HomePage\l 2p\construction.htm Page 220

12/04/2010

HP Web PrintSmart

An error occurred whilereading thisweb site. Please make sure that you have an
active I nternet connection and that you have entered the URL correctly.

D:\DOC\HomePage\l 2p\tutrefs.ntm Page 221

